These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
811 related articles for article (PubMed ID: 25300825)
21. Graphene in ionic liquids: collective van der Waals interaction and hindrance of self-assembly pathway. Zhao Y; Hu Z J Phys Chem B; 2013 Sep; 117(36):10540-7. PubMed ID: 23957744 [TBL] [Abstract][Full Text] [Related]
22. Modeling van der Waals interactions between proteins and inorganic surfaces from time-dependent density functional theory calculations. Oliveira MJ; Botti S; Marques MA Phys Chem Chem Phys; 2011 Sep; 13(33):15055-61. PubMed ID: 21785779 [TBL] [Abstract][Full Text] [Related]
23. Adsorption of large hydrocarbons on coinage metals: a van der Waals density functional study. Björk J; Stafström S Chemphyschem; 2014 Sep; 15(13):2851-8. PubMed ID: 25044659 [TBL] [Abstract][Full Text] [Related]
24. Theoretical insight into hydrogen adsorption onto graphene: a first-principles B3LYP-D3 study. Darvish Ganji M; Hosseini-Khah SM; Amini-Tabar Z Phys Chem Chem Phys; 2015 Jan; 17(4):2504-11. PubMed ID: 25490973 [TBL] [Abstract][Full Text] [Related]
25. Importance of van der Waals Interactions in QM/MM Simulations. Riccardi D; Li G; Cui Q J Phys Chem B; 2004 May; 108(20):6467-78. PubMed ID: 18950136 [TBL] [Abstract][Full Text] [Related]
26. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory. Göltl F; Grüneis A; Bučko T; Hafner J J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253 [TBL] [Abstract][Full Text] [Related]
27. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods. Ganesh P; Kim J; Park C; Yoon M; Reboredo FA; Kent PR J Chem Theory Comput; 2014 Dec; 10(12):5318-23. PubMed ID: 26583215 [TBL] [Abstract][Full Text] [Related]
28. Ab initio and semi-empirical van der Waals study of graphene-boron nitride interaction from a molecular point of view. Caciuc V; Atodiresei N; Callsen M; Lazić P; Blügel S J Phys Condens Matter; 2012 Oct; 24(42):424214. PubMed ID: 23032913 [TBL] [Abstract][Full Text] [Related]
29. Tuning the van der Waals Interaction of Graphene with Molecules via Doping. Huttmann F; Martínez-Galera AJ; Caciuc V; Atodiresei N; Schumacher S; Standop S; Hamada I; Wehling TO; Blügel S; Michely T Phys Rev Lett; 2015 Dec; 115(23):236101. PubMed ID: 26684126 [TBL] [Abstract][Full Text] [Related]
30. Van der Waals interactions: evaluations by use of a statistical mechanical method. Høye JS J Chem Phys; 2011 Oct; 135(13):134102. PubMed ID: 21992277 [TBL] [Abstract][Full Text] [Related]
31. Are we van der Waals ready? Björkman T; Gulans A; Krasheninnikov AV; Nieminen RM J Phys Condens Matter; 2012 Oct; 24(42):424218. PubMed ID: 23032078 [TBL] [Abstract][Full Text] [Related]
32. GGA versus van der Waals density functional results for mixed gold/mercury molecules and pure Au and Hg cluster properties. Fernández EM; Balbás LC Phys Chem Chem Phys; 2011 Dec; 13(46):20863-70. PubMed ID: 22006277 [TBL] [Abstract][Full Text] [Related]
33. The interplay of van der Waals and weak chemical forces in the adsorption of salicylic acid on NaCl(001). Chen W; Tegenkamp C; Pfnür H; Bredow T Phys Chem Chem Phys; 2009 Nov; 11(41):9337-40. PubMed ID: 19830314 [TBL] [Abstract][Full Text] [Related]
34. Understanding corrosion inhibition with van der Waals DFT methods: the case of benzotriazole. Gattinoni C; Michaelides A Faraday Discuss; 2015; 180():439-58. PubMed ID: 25907526 [TBL] [Abstract][Full Text] [Related]
35. Physical adsorption: theory of van der Waals interactions between particles and clean surfaces. Tao J; Rappe AM Phys Rev Lett; 2014 Mar; 112(10):106101. PubMed ID: 24679308 [TBL] [Abstract][Full Text] [Related]
36. Spherical-shell model for the van der Waals coefficients between fullerenes and/or nearly spherical nanoclusters. Perdew JP; Tao J; Hao P; Ruzsinszky A; Csonka GI; Pitarke JM J Phys Condens Matter; 2012 Oct; 24(42):424207. PubMed ID: 23032569 [TBL] [Abstract][Full Text] [Related]
37. A natural orbital analysis of the long range behavior of chemical bonding and van der Waals interaction in singlet H2: the issue of zero natural orbital occupation numbers. Sheng XW; Mentel ŁM; Gritsenko OV; Baerends EJ J Chem Phys; 2013 Apr; 138(16):164105. PubMed ID: 23635109 [TBL] [Abstract][Full Text] [Related]
38. Including screening in van der Waals corrected density functional theory calculations: the case of atoms and small molecules physisorbed on graphene. Silvestrelli PL; Ambrosetti A J Chem Phys; 2014 Mar; 140(12):124107. PubMed ID: 24697424 [TBL] [Abstract][Full Text] [Related]
39. Accurate description of van der Waals complexes by density functional theory including empirical corrections. Grimme S J Comput Chem; 2004 Sep; 25(12):1463-73. PubMed ID: 15224390 [TBL] [Abstract][Full Text] [Related]
40. Hydrogen bonds and van der waals forces in ice at ambient and high pressures. Santra B; Klimeš J; Alfè D; Tkatchenko A; Slater B; Michaelides A; Car R; Scheffler M Phys Rev Lett; 2011 Oct; 107(18):185701. PubMed ID: 22107644 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]