These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25300962)

  • 1. Efficiency of visual feedback integration differs between dominant and non-dominant arms during a reaching task.
    Apker GA; Dyson K; Frantz G; Buneo CA
    Exp Brain Res; 2015 Jan; 233(1):317-27. PubMed ID: 25300962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of execution noise to arm movement variability in three-dimensional space.
    Apker GA; Buneo CA
    J Neurophysiol; 2012 Jan; 107(1):90-102. PubMed ID: 21975450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interacting noise sources shape patterns of arm movement variability in three-dimensional space.
    Apker GA; Darling TK; Buneo CA
    J Neurophysiol; 2010 Nov; 104(5):2654-66. PubMed ID: 20844108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of reach extent with the paretic and nonparetic arms after unilateral sensorimotor stroke: kinematic differences based on side of brain damage.
    Stewart JC; Gordon J; Winstein CJ
    Exp Brain Res; 2014 Jul; 232(7):2407-19. PubMed ID: 24718494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaching activity in the medial posterior parietal cortex of monkeys is modulated by visual feedback.
    Bosco A; Breveglieri R; Chinellato E; Galletti C; Fattori P
    J Neurosci; 2010 Nov; 30(44):14773-85. PubMed ID: 21048136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The positive effect of mirror visual feedback on arm control in children with spastic hemiparetic cerebral palsy is dependent on which arm is viewed.
    Smorenburg AR; Ledebt A; Feltham MG; Deconinck FJ; Savelsbergh GJ
    Exp Brain Res; 2011 Sep; 213(4):393-402. PubMed ID: 21766223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is visual-based, online control of manual-aiming movements disturbed when adapting to new movement dynamics?
    Mackrous I; Proteau L
    Vision Res; 2015 May; 110(Pt B):223-32. PubMed ID: 24874948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When adaptive control fails: Slow recovery of reduced rapid online control during reaching under reversed vision.
    Kuang S; Gail A
    Vision Res; 2015 May; 110(Pt B):155-65. PubMed ID: 25218421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programming of left hand exploits task set but that of right hand depends on recent history.
    Tang R; Zhu H
    Exp Brain Res; 2017 Jul; 235(7):2215-2224. PubMed ID: 28451736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No evidence of a lower visual field specialization for visuomotor control.
    Binsted G; Heath M
    Exp Brain Res; 2005 Mar; 162(1):89-94. PubMed ID: 15517212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of visual target information on the online control of movements.
    Sarlegna FR; Mutha PK
    Vision Res; 2015 May; 110(Pt B):144-54. PubMed ID: 25038472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.
    Batcho CS; Gagné M; Bouyer LJ; Roy JS; Mercier C
    Neuroscience; 2016 Nov; 337():267-275. PubMed ID: 27646292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manual preferences for visually- and haptically-guided grasping.
    Stone KD; Gonzalez CL
    Acta Psychol (Amst); 2015 Sep; 160():1-10. PubMed ID: 26134414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of control during bimanual movement and stabilization.
    Takagi A; Kashino M
    Sci Rep; 2024 Jul; 14(1):16506. PubMed ID: 39019893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New visuomotor maps are immediately available to the opposite limb.
    Carroll TJ; Poh E; de Rugy A
    J Neurophysiol; 2014 Jun; 111(11):2232-43. PubMed ID: 24598522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Task-dependent asymmetries in the utilization of proprioceptive feedback for goal-directed movement.
    Goble DJ; Brown SH
    Exp Brain Res; 2007 Jul; 180(4):693-704. PubMed ID: 17297548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle activation during resistance training with no external load - effects of training status, movement velocity, dominance, and visual feedback.
    Gentil P; Bottaro M; Noll M; Werner S; Vasconcelos JC; Seffrin A; Campos MH
    Physiol Behav; 2017 Oct; 179():148-152. PubMed ID: 28606773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic dominance varies with handedness: reduced interlimb asymmetries in left-handers.
    Przybyla A; Good DC; Sainburg RL
    Exp Brain Res; 2012 Feb; 216(3):419-31. PubMed ID: 22113487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual feedback reduces bimanual coupling of movement amplitudes, but not of directions.
    Cardoso de Oliveira S; Barthélémy S
    Exp Brain Res; 2005 Mar; 162(1):78-88. PubMed ID: 15772872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticipatory Postural Adjustments associated with reaching movements are programmed according to the availability of visual information.
    Esposti R; Bruttini C; Bolzoni F; Cavallari P
    Exp Brain Res; 2017 May; 235(5):1349-1360. PubMed ID: 28213690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.