These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25301205)

  • 1. The KCaSrTa5O15 photocatalyst with tungsten bronze structure for water splitting and CO2 reduction.
    Takayama T; Tanabe K; Saito K; Iwase A; Kudo A
    Phys Chem Chem Phys; 2014 Nov; 16(44):24417-22. PubMed ID: 25301205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO
    Yoshino S; Takayama T; Yamaguchi Y; Iwase A; Kudo A
    Acc Chem Res; 2022 Apr; 55(7):966-977. PubMed ID: 35230087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Active NaTaO
    Nakanishi H; Iizuka K; Takayama T; Iwase A; Kudo A
    ChemSusChem; 2017 Jan; 10(1):112-118. PubMed ID: 27874269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent.
    Iizuka K; Wato T; Miseki Y; Saito K; Kudo A
    J Am Chem Soc; 2011 Dec; 133(51):20863-8. PubMed ID: 22087856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure.
    Kato H; Asakura K; Kudo A
    J Am Chem Soc; 2003 Mar; 125(10):3082-9. PubMed ID: 12617675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water.
    Teramura K; Wang Z; Hosokawa S; Sakata Y; Tanaka T
    Chemistry; 2014 Aug; 20(32):9906-9. PubMed ID: 25044046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator.
    Abe R; Shinmei K; Koumura N; Hara K; Ohtani B
    J Am Chem Soc; 2013 Nov; 135(45):16872-84. PubMed ID: 24128384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strontium Titanate Based Artificial Leaf Loaded with Reduction and Oxidation Cocatalysts for Selective CO
    Shoji S; Yamaguchi A; Sakai E; Miyauchi M
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20613-20619. PubMed ID: 28561566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar water splitting over Rh
    Watanabe K; Iwase A; Kudo A
    Chem Sci; 2020 Mar; 11(9):2330-2334. PubMed ID: 32206292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water splitting over new niobate photocatalysts with tungsten-bronze-type structure and effect of transition metal-doping.
    Miseki Y; Kudo A
    ChemSusChem; 2011 Feb; 4(2):245-51. PubMed ID: 20936645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic CO
    Yoshino S; Iwase A; Yamaguchi Y; Suzuki TM; Morikawa T; Kudo A
    J Am Chem Soc; 2022 Feb; 144(5):2323-2332. PubMed ID: 35076230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production.
    Yang J; Yan H; Zong X; Wen F; Liu M; Li C
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110430. PubMed ID: 23816907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures.
    Tsuji I; Kato H; Kobayashi H; Kudo A
    J Am Chem Soc; 2004 Oct; 126(41):13406-13. PubMed ID: 15479097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocomposites of tantalum-based pyrochlore and indium hydroxide showing high and stable photocatalytic activities for overall water splitting and carbon dioxide reduction.
    Hsieh MC; Wu GC; Liu WG; Goddard WA; Yang CM
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14216-20. PubMed ID: 25384922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic reduction of CO2 and protons using water as an electron donor over potassium tantalate nanoflakes.
    Li K; Handoko AD; Khraisheh M; Tang J
    Nanoscale; 2014 Aug; 6(16):9767-73. PubMed ID: 25007379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A redox-mediator-free solar-driven Z-scheme water-splitting system consisting of modified Ta3N5 as an oxygen-evolution photocatalyst.
    Ma SS; Maeda K; Hisatomi T; Tabata M; Kudo A; Domen K
    Chemistry; 2013 Jun; 19(23):7480-6. PubMed ID: 23584996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible Light-Driven Z-Scheme Water Splitting Using Oxysulfide H
    Ma G; Chen S; Kuang Y; Akiyama S; Hisatomi T; Nakabayashi M; Shibata N; Katayama M; Minegishi T; Domen K
    J Phys Chem Lett; 2016 Oct; 7(19):3892-3896. PubMed ID: 27626912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CH
    Soontornchaiyakul W; Yoshino S; Kanazawa T; Haruki R; Fan D; Nozawa S; Yamaguchi Y; Kudo A
    J Am Chem Soc; 2023 Sep; 145(37):20485-20491. PubMed ID: 37599601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Barium titanate photocatalysts with silver-manganese dual cocatalyst for carbon dioxide reduction with water.
    Liu S; Qiu H; Yamamoto A; Yoshida H
    Dalton Trans; 2024 Jun; 53(25):10712-10719. PubMed ID: 38869439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.