These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 25301621)

  • 1. Biorobotics: using robots to emulate and investigate agile locomotion.
    Ijspeert AJ
    Science; 2014 Oct; 346(6206):196-203. PubMed ID: 25301621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotion of arthropods in aquatic environment and their applications in robotics.
    Kwak B; Bae J
    Bioinspir Biomim; 2018 May; 13(4):041002. PubMed ID: 29508773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-organization, embodiment, and biologically inspired robotics.
    Pfeifer R; Lungarella M; Iida F
    Science; 2007 Nov; 318(5853):1088-93. PubMed ID: 18006736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots.
    Ijspeert AJ; Crespi A; Cabelguen JM
    Neuroinformatics; 2005; 3(3):171-95. PubMed ID: 16077158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion.
    Karakasiliotis K; Thandiackal R; Melo K; Horvat T; Mahabadi NK; Tsitkov S; Cabelguen JM; Ijspeert AJ
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27358276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction to focus issue: bipedal locomotion--from robots to humans.
    Milton JG
    Chaos; 2009 Jun; 19(2):026101. PubMed ID: 19566261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insect walking and robotics.
    Delcomyn F
    Annu Rev Entomol; 2004; 49():51-70. PubMed ID: 14651456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological computation of multi-gaited robot locomotion based on free vibration.
    Reis M; Yu X; Maheshwari N; Iida F
    Artif Life; 2013; 19(1):97-114. PubMed ID: 23186346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central pattern generators for locomotion control in animals and robots: a review.
    Ijspeert AJ
    Neural Netw; 2008 May; 21(4):642-53. PubMed ID: 18555958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual guidance based on optic flow: a biorobotic approach.
    Franceschini N
    J Physiol Paris; 2004; 98(1-3):281-92. PubMed ID: 15477039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A virtual reality environment for designing and fitting neural prosthetic limbs.
    Hauschild M; Davoodi R; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):9-15. PubMed ID: 17436870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of wormlike robotic locomotion on compliant surfaces.
    Zarrouk D; Sharf I; Shoham M
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):301-9. PubMed ID: 20709635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards realization of multi-terrestrial locomotion: decentralized control of a sheet-like robot based on the scaffold-exploitation mechanism.
    Kano T; Watanabe Y; Ishiguro A
    Bioinspir Biomim; 2012 Dec; 7(4):046012. PubMed ID: 23093049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robots with a gentle touch: advances in assistive robotics and prosthetics.
    Harwin WS
    Technol Health Care; 1999; 7(6):411-7. PubMed ID: 10665674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An octopus-bioinspired solution to movement and manipulation for soft robots.
    Calisti M; Giorelli M; Levy G; Mazzolai B; Hochner B; Laschi C; Dario P
    Bioinspir Biomim; 2011 Sep; 6(3):036002. PubMed ID: 21670493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditions for worm-robot locomotion in a flexible environment: theory and experiments.
    Zarrouk D; Sharf I; Shoham M
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1057-67. PubMed ID: 22231667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-modal locomotion: from animal to application.
    Lock RJ; Burgess SC; Vaidyanathan R
    Bioinspir Biomim; 2014 Mar; 9(1):011001. PubMed ID: 24343102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Jumping robots: a biomimetic solution to locomotion across rough terrain.
    Armour R; Paskins K; Bowyer A; Vincent J; Megill W; Bomphrey R
    Bioinspir Biomim; 2007 Sep; 2(3):S65-82. PubMed ID: 17848786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots.
    Drama Ö; Badri-Spröwitz A
    Bioinspir Biomim; 2020 Mar; 15(3):036013. PubMed ID: 32052793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.