These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25301625)

  • 1. Sidewinding with minimal slip: snake and robot ascent of sandy slopes.
    Marvi H; Gong C; Gravish N; Astley H; Travers M; Hatton RL; Mendelson JR; Choset H; Hu DL; Goldman DI
    Science; 2014 Oct; 346(6206):224-9. PubMed ID: 25301625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion.
    Astley HC; Gong C; Dai J; Travers M; Serrano MM; Vela PA; Choset H; Mendelson JR; Hu DL; Goldman DI
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6200-5. PubMed ID: 25831489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Side-impact collision: mechanics of obstacle negotiation in sidewinding snakes.
    Astley HC; Rieser JM; Kaba A; Paez VM; Tomkinson I; Mendelson JR; Goldman DI
    Bioinspir Biomim; 2020 Oct; 15(6):065005. PubMed ID: 33111708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applied Physics. Of snakes and robots.
    Socha JJ
    Science; 2014 Oct; 346(6206):160-1. PubMed ID: 25301600
    [No Abstract]   [Full Text] [Related]  

  • 5. Scaling and relations of morphology with locomotor kinematics in the sidewinder rattlesnake Crotalus cerastes.
    Tingle JL; Sherman BM; Garland T
    J Exp Biol; 2022 Apr; 225(7):. PubMed ID: 35438776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor kinematics on sand versus vinyl flooring in the sidewinder rattlesnake Crotalus cerastes.
    Tingle JL; Sherman BM; Garland T
    Biol Open; 2023 Nov; 12(11):. PubMed ID: 37909760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding Decentralized Control Mechanism Underlying Adaptive and Versatile Locomotion of Snakes.
    Kano T; Ishiguro A
    Integr Comp Biol; 2020 Jul; 60(1):232-247. PubMed ID: 32215573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facultatively Sidewinding Snakes and the Origins of Locomotor Specialization.
    Tingle JL
    Integr Comp Biol; 2020 Jul; 60(1):202-214. PubMed ID: 32176289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral Oscillation and Body Compliance Help Snakes and Snake Robots Stably Traverse Large, Smooth Obstacles.
    Fu Q; Gart SW; Mitchel TW; Kim JS; Chirikjian GS; Li C
    Integr Comp Biol; 2020 Jul; 60(1):171-179. PubMed ID: 32215569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A survey of snake-inspired robot designs.
    Hopkins JK; Spranklin BW; Gupta SK
    Bioinspir Biomim; 2009 Jun; 4(2):021001. PubMed ID: 19158415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact feedback helps snake robots propel against uneven terrain using vertical bending.
    Fu Q; Li C
    Bioinspir Biomim; 2023 Aug; 18(5):. PubMed ID: 37433307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotory transition from water to sand and its effects on undulatory kinematics in sand lances (Ammodytidae).
    Gidmark NJ; Strother JA; Horton JM; Summers AP; Brainerd EL
    J Exp Biol; 2011 Feb; 214(Pt 4):657-64. PubMed ID: 21270315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flight-phase terrain following control strategy for stable and robust hopping of a one-legged robot under large terrain variations.
    Shemer N; Degani A
    Bioinspir Biomim; 2017 Aug; 12(4):046011. PubMed ID: 28524066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of rattlesnakes (Viperidae; Crotalus) in the warm deserts of western North America shaped by Neogene vicariance and Quaternary climate change.
    Douglas ME; Douglas MR; Schuett GW; Porras LW
    Mol Ecol; 2006 Oct; 15(11):3353-74. PubMed ID: 16968275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A decentralized control scheme for an effective coordination of phasic and tonic control in a snake-like robot.
    Sato T; Kano T; Ishiguro A
    Bioinspir Biomim; 2012 Mar; 7(1):016005. PubMed ID: 22183033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfang Distances of Rattlesnakes: Sexual, Interspecific, and Body Size-related Variation, and Implications for Snakebite Research and Management.
    Hayes WK; Corbit AG; Cardwell MD; Herbert SS
    Wilderness Environ Med; 2017 Jun; 28(2):101-107. PubMed ID: 28483391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscular mechanisms of snake locomotion: an electromyographic study of the sidewinding and concertina modes of Crotalus cerastes, Nerodia fasciata and Elaphe obsoleta.
    Jayne BC
    J Exp Biol; 1988 Nov; 140():1-33. PubMed ID: 3204332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimentally altered navigational demands induce changes in the cortical forebrain of free-ranging northern pacific rattlesnakes (Crotalus o. oreganus).
    Holding ML; Frazier JA; Taylor EN; Strand CR
    Brain Behav Evol; 2012; 79(3):144-54. PubMed ID: 22237415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles.
    Mazouchova N; Gravish N; Savu A; Goldman DI
    Biol Lett; 2010 Jun; 6(3):398-401. PubMed ID: 20147312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smooth transition for CPG-based body shape control of a snake-like robot.
    Nor NM; Ma S
    Bioinspir Biomim; 2014 Mar; 9(1):016003. PubMed ID: 24343201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.