These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 25301661)
21. Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys. Wedeux B; Dalponte M; Schlund M; Hagen S; Cochrane M; Graham L; Usup A; Thomas A; Coomes D Glob Chang Biol; 2020 Jul; 26(7):3947-3964. PubMed ID: 32267596 [TBL] [Abstract][Full Text] [Related]
22. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in Peninsular Malaysia. Dhandapani S; Ritz K; Evers S; Yule CM; Sjögersten S Sci Total Environ; 2019 Mar; 655():220-231. PubMed ID: 30471590 [TBL] [Abstract][Full Text] [Related]
23. Burkholderia humisilvae sp. nov., Burkholderia solisilvae sp. nov. and Burkholderia rhizosphaerae sp. nov., isolated from forest soil and rhizosphere soil. Lee JC; Whang KS Int J Syst Evol Microbiol; 2015 Sep; 65(9):2986-2992. PubMed ID: 26031294 [TBL] [Abstract][Full Text] [Related]
24. Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Jackson CR; Liew KC; Yule CM Microb Ecol; 2009 Apr; 57(3):402-12. PubMed ID: 18548182 [TBL] [Abstract][Full Text] [Related]
29. Screening of Indonesian peat soil bacteria producing antimicrobial compounds. Mahdiyah D; Farida H; Riwanto I; Mustofa M; Wahjono H; Laksana Nugroho T; Reki W Saudi J Biol Sci; 2020 Oct; 27(10):2604-2611. PubMed ID: 32994717 [TBL] [Abstract][Full Text] [Related]
30. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Reenan RA; Kolodner RD Genetics; 1992 Dec; 132(4):975-85. PubMed ID: 1334021 [TBL] [Abstract][Full Text] [Related]
31. Microbial Community Structure in a Malaysian Tropical Peat Swamp Forest: The Influence of Tree Species and Depth. Too CC; Keller A; Sickel W; Lee SM; Yule CM Front Microbiol; 2018; 9():2859. PubMed ID: 30564202 [TBL] [Abstract][Full Text] [Related]
32. Micromonosporin A, a novel 24-membered polyene lactam macrolide from Micromonospora sp. isolated from peat swamp forest. Thawai C; Kittakoop P; Tanasupawat S; Suwanborirux K; Sriklung K; Thebtaranonth Y Chem Biodivers; 2004 Apr; 1(4):640-5. PubMed ID: 17191875 [TBL] [Abstract][Full Text] [Related]
33. Evaluation on the decomposability of tropical forest peat soils after conversion to an oil palm plantation. Sangok FE; Maie N; Melling L; Watanabe A Sci Total Environ; 2017 Jun; 587-588():381-388. PubMed ID: 28242223 [TBL] [Abstract][Full Text] [Related]
34. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Hirano T; Kusin K; Limin S; Osaki M Glob Chang Biol; 2014 Feb; 20(2):555-65. PubMed ID: 23775585 [TBL] [Abstract][Full Text] [Related]
36. Biotransformation of (+)-catechin into taxifolin by a two-step oxidation: primary stage of (+)-catechin metabolism by a novel (+)-catechin-degrading bacteria, Burkholderia sp. KTC-1, isolated from tropical peat. Matsuda M; Otsuka Y; Jin S; Wasaki J; Watanabe J; Watanabe T; Osaki M Biochem Biophys Res Commun; 2008 Feb; 366(2):414-9. PubMed ID: 18068670 [TBL] [Abstract][Full Text] [Related]
37. Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation. Cooper HV; Evers S; Aplin P; Crout N; Dahalan MPB; Sjogersten S Nat Commun; 2020 Jan; 11(1):407. PubMed ID: 31964892 [TBL] [Abstract][Full Text] [Related]
38. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Jauhiainen J; Limin S; Silvennoinen H; Vasander H Ecology; 2008 Dec; 89(12):3503-14. PubMed ID: 19137955 [TBL] [Abstract][Full Text] [Related]
39. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Kanokratana P; Uengwetwanit T; Rattanachomsri U; Bunterngsook B; Nimchua T; Tangphatsornruang S; Plengvidhya V; Champreda V; Eurwilaichitr L Microb Ecol; 2011 Apr; 61(3):518-28. PubMed ID: 21057783 [TBL] [Abstract][Full Text] [Related]
40. Draft genome sequence of the antifungal-producing plant-benefiting bacterium Burkholderia pyrrocinia CH-67. Song JY; Kwak MJ; Lee KY; Kong HG; Kim BK; Kwon SK; Lee SW; Kim JF J Bacteriol; 2012 Dec; 194(23):6649-50. PubMed ID: 23144399 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]