BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25302153)

  • 1. Reflection-mode multiple-illumination photoacoustic sensing to estimate optical properties.
    Ranasinghesagara JC; Jiang Y; Zemp RJ
    Photoacoustics; 2014 Mar; 2(1):33-8. PubMed ID: 25302153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoacoustic technique for assessing optical scattering properties of turbid media.
    Ranasinghesagara JC; Jian Y; Chen X; Mathewson K; Zemp RJ
    J Biomed Opt; 2009; 14(4):040504. PubMed ID: 19725709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic tomography as a method to estimate the optical fluence distribution in turbid media.
    Yip LCM; Rascevska E; Omidi P; Carson JJL
    Biomed Opt Express; 2023 Oct; 14(10):5036-5046. PubMed ID: 37854557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating optical absorption, scattering, and Grueneisen distributions with multiple-illumination photoacoustic tomography.
    Shao P; Cox B; Zemp RJ
    Appl Opt; 2011 Jul; 50(19):3145-54. PubMed ID: 21743514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ultrasound transducer face reflectivity on the light fluence inside a turbid medium in photoacoustic imaging.
    Tavakoli B; Kumavor PD; Aguirre A; Zhu Q
    J Biomed Opt; 2010; 15(4):046003. PubMed ID: 20799805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of a diffuse optical measurements-assisted quantitative photoacoustic tomographic method in reflection geometry.
    Xu C; Kumavor PD; Aguirre A; Zhu Q
    J Biomed Opt; 2012 Jun; 17(6):061213. PubMed ID: 22734743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography.
    Bauer AQ; Nothdurft RE; Erpelding TN; Wang LV; Culver JP
    J Biomed Opt; 2011 Sep; 16(9):096016. PubMed ID: 21950930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined photoacoustic and oblique-incidence diffuse reflectance system for quantitative photoacoustic imaging in turbid media.
    Ranasinghesagara JC; Zemp RJ
    J Biomed Opt; 2010; 15(4):046016. PubMed ID: 20799818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative photoacoustic tomography with light fluence compensation based on radiance Monte Carlo model.
    Zheng S; Yingsa H; Meichen S; Qi M
    Phys Med Biol; 2023 Mar; 68(6):. PubMed ID: 36821863
    [No Abstract]   [Full Text] [Related]  

  • 10. A Single Sensor Dual-Modality Photoacoustic Fusion Imaging for Compensation of Light Fluence Variation.
    Haoran Jin ; Ruochong Zhang ; Siyu Liu ; Zesheng Zheng ; Yuanjin Zheng
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1810-1813. PubMed ID: 30872219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating photoacoustic tomography into a multimodal automated breast ultrasound scanner.
    Kelly C; Refaee A; Salcudean SE
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33215477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Monte Carlo simulation of light distribution in mouse brain in quantitative photoacoustic computed tomography.
    Tang Y; Yao J
    Quant Imaging Med Surg; 2021 Mar; 11(3):1046-1059. PubMed ID: 33654676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent.
    Rajian JR; Carson PL; Wang X
    Opt Express; 2009 Mar; 17(6):4879-89. PubMed ID: 19293919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of isotropic light dosimetry probes based on scattering bulbs in turbid media.
    Marijnissen JP; Star WM
    Phys Med Biol; 2002 Jun; 47(12):2049-58. PubMed ID: 12118600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data.
    Li X; Jiang H
    Phys Med Biol; 2013 Feb; 58(4):999-1011. PubMed ID: 23339968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media.
    Lai P; Xu X; Liu H; Suzuki Y; Wang LV
    J Biomed Opt; 2011 Aug; 16(8):080505. PubMed ID: 21895305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consecutively reconstructing absorption and scattering distributions in turbid media with multiple-illumination photoacoustic tomography.
    Shao P; Harrison TJ; Zemp RJ
    J Biomed Opt; 2014 Dec; 19(12):126009. PubMed ID: 25517128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study.
    Zhou Y; Tang E; Luo J; Yao J
    J Biomed Opt; 2018 Jan; 23(1):1-10. PubMed ID: 29380565
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.