BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25302155)

  • 1. Photoacoustic excitation profiles of gold nanoparticles.
    Feis A; Gellini C; Salvi PR; Becucci M
    Photoacoustics; 2014 Mar; 2(1):47-53. PubMed ID: 25302155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
    Jain PK; Lee KS; El-Sayed IH; El-Sayed MA
    J Phys Chem B; 2006 Apr; 110(14):7238-48. PubMed ID: 16599493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of fluorescence signals generated by elastic scattering under monochromatic incident light for determining the scattering efficiencies of various plasmonic nanoparticles.
    Song JE; Park JH; La JA; Park S; Jeong MK; Cho EC
    Analyst; 2016 Aug; 141(15):4632-9. PubMed ID: 27215291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation.
    Masim FC; Liu HL; Porta M; Yonezawa T; Balčytis A; Juodkazis S; Hsu WH; Hatanaka K
    Opt Express; 2016 Jun; 24(13):14781-92. PubMed ID: 27410630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)-Ag(shell) nanospheres.
    Sugawa K; Akiyama T; Tanoue Y; Harumoto T; Yanagida S; Yasumori A; Tomita S; Otsuki J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21182-9. PubMed ID: 25558009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-particle absorption spectroscopy by photothermal contrast.
    Yorulmaz M; Nizzero S; Hoggard A; Wang LY; Cai YY; Su MN; Chang WS; Link S
    Nano Lett; 2015 May; 15(5):3041-7. PubMed ID: 25849105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer.
    Xie HN; Larmour IA; Chen YC; Wark AW; Tileli V; McComb DW; Faulds K; Graham D
    Nanoscale; 2013 Jan; 5(2):765-71. PubMed ID: 23233034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Extinction and Absorption UV-Visible Spectroscopy as a Method for Revealing Shape Imperfections of Metallic Nanoparticles.
    Grand J; Auguié B; Le Ru EC
    Anal Chem; 2019 Nov; 91(22):14639-14648. PubMed ID: 31621299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quickly Alternating Green and Red Laser Source for Real-time Multispectral Photoacoustic Microscopy.
    Park SM; Kim DY; Cho SW; Kim BM; Lee TG; Kim CS; Lee SW
    Photoacoustics; 2020 Dec; 20():100204. PubMed ID: 33014706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical wavelength dependence of photoacoustic signal of gold nanofluid.
    Gandolfi M; Banfi F; Glorieux C
    Photoacoustics; 2020 Dec; 20():100199. PubMed ID: 32874914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Scattering of Liquid Gallium Nanoparticles Coupled to Thin Metal Films.
    Deng F; Liu H; Peng Y; Panmai M; Lan S
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32486133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced Raman scattering from Au nanorods, nanotriangles, and nanostars with tuned plasmon resonances.
    Khlebtsov BN; Burov AM; Zarkov SV; Khlebtsov NG
    Phys Chem Chem Phys; 2023 Nov; 25(45):30903-30913. PubMed ID: 37955312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photothermal Determination of Absorption and Scattering Spectra of Silver Nanoparticles.
    Marcano Olaizola A
    Appl Spectrosc; 2018 Feb; 72(2):234-240. PubMed ID: 29065695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optothermal properties of plasmonic inorganic nanoparticles for photoacoustic applications.
    Gellini C; Feis A
    Photoacoustics; 2021 Sep; 23():100281. PubMed ID: 34194975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photothermal treatment of glioblastoma cells based on plasmonic nanoparticles.
    Jalali BK; Shik SS; Karimzadeh-Bardeei L; Heydari E; Ara MHM
    Lasers Med Sci; 2023 May; 38(1):122. PubMed ID: 37162647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the temperature-dependent dielectric constant on the photoacoustic effect of gold nanospheres.
    Sun JP; Ren YT; Gao RX; Gao BH; He MJ; Qi H
    Phys Chem Chem Phys; 2022 Dec; 24(48):29667-29682. PubMed ID: 36453140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.