These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25302381)

  • 21. The significant role of water in reactions occurring on the surface of interstellar ice grains: Hydrogenation of pure ketene H
    Ibrahim M; Guillemin JC; Chaquin P; Markovits A; Krim L
    Phys Chem Chem Phys; 2024 Jan; 26(5):4200-4207. PubMed ID: 38230527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal conductivity of normal and deuterated water, crystalline ice, and amorphous ices.
    Andersson O
    J Chem Phys; 2018 Sep; 149(12):124506. PubMed ID: 30278676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase.
    Aragones JL; Conde MM; Noya EG; Vega C
    Phys Chem Chem Phys; 2009 Jan; 11(3):543-55. PubMed ID: 19283272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interstellar Enolization-Acetaldehyde (CH
    Kleimeier NF; Kaiser RI
    Chemphyschem; 2021 Jun; 22(12):1229-1236. PubMed ID: 33913232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient surface formation route of interstellar hydroxylamine through NO hydrogenation. II. The multilayer regime in interstellar relevant ices.
    Fedoseev G; Ioppolo S; Lamberts T; Zhen JF; Cuppen HM; Linnartz H
    J Chem Phys; 2012 Aug; 137(5):054714. PubMed ID: 22894378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sputtering effects and water formation on an amorphous silicate surface.
    Jing D; He J; Bonini M; Brucato JR; Vidali G
    J Phys Chem A; 2013 Apr; 117(14):3009-16. PubMed ID: 23505999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diffusion and aggregation of sodium fluorescein in aqueous solutions.
    Casalini T; Salvalaglio M; Perale G; Masi M; Cavallotti C
    J Phys Chem B; 2011 Nov; 115(44):12896-904. PubMed ID: 21957875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-density amorphous ice: Molecular dynamics simulations of the glass transition at 0.3 GPa.
    Seidl M; Loerting T; Zifferer G
    J Chem Phys; 2009 Sep; 131(11):114502. PubMed ID: 19778124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of Hydroxylamine in Low-Temperature Interstellar Model Ices.
    Tsegaw YA; Góbi S; Förstel M; Maksyutenko P; Sander W; Kaiser RI
    J Phys Chem A; 2017 Oct; 121(40):7477-7493. PubMed ID: 28892389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions of adsorbed CO₂ on water ice at low temperatures.
    Karssemeijer LJ; de Wijs GA; Cuppen HM
    Phys Chem Chem Phys; 2014 Aug; 16(29):15630-9. PubMed ID: 24955794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structure and dynamics of carbon dioxide and water containing ices investigated via THz and mid-IR spectroscopy.
    Allodi MA; Ioppolo S; Kelley MJ; McGuire BA; Blake GA
    Phys Chem Chem Phys; 2014 Feb; 16(8):3442-55. PubMed ID: 24394213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular-dynamics study of photodissociation of water in crystalline and amorphous ices.
    Andersson S; Al-Halabi A; Kroes GJ; van Dishoeck EF
    J Chem Phys; 2006 Feb; 124(6):64715. PubMed ID: 16483237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amorphous and crystalline ices studied by dielectric spectroscopy.
    Plaga LJ; Raidt A; Fuentes Landete V; Amann-Winkel K; Massani B; Gasser TM; Gainaru C; Loerting T; Böhmer R
    J Chem Phys; 2019 Jun; 150(24):244501. PubMed ID: 31255070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the behavior of water at subfreezing temperatures in a protein crystal: evidence of higher mobility than in bulk water.
    Wang D; Böckmann A; Dolenc J; Meier BH; van Gunsteren WF
    J Phys Chem B; 2013 Oct; 117(39):11433-47. PubMed ID: 23998392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ice in space: surface science investigations of the thermal desorption of model interstellar ices on dust grain analogue surfaces.
    Burke DJ; Brown WA
    Phys Chem Chem Phys; 2010 Jun; 12(23):5947-69. PubMed ID: 20520900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields.
    Lee MW; Meuwly M
    Phys Chem Chem Phys; 2013 Dec; 15(46):20303-12. PubMed ID: 24170171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in the morphology of interstellar ice analogues after hydrogen atom exposure.
    Accolla M; Congiu E; Dulieu F; Manicò G; Chaabouni H; Matar E; Mokrane H; Lemaire JL; Pirronello V
    Phys Chem Chem Phys; 2011 May; 13(17):8037-45. PubMed ID: 21445409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulation of amorphous indomethacin-poly(vinylpyrrolidone) glasses: solubility and hydrogen bonding interactions.
    Xiang TX; Anderson BD
    J Pharm Sci; 2013 Mar; 102(3):876-91. PubMed ID: 23280486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature driven transformations of glycine molecules embedded in interstellar ice.
    Yusef-Buey M; Mineva T; Talbi D; Rapacioli M
    Phys Chem Chem Phys; 2024 Jan; 26(3):2414-2425. PubMed ID: 38168973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of Formamide at the Surface of Amorphous and Crystalline Ices under Interstellar and Tropospheric Conditions. A Grand Canonical Monte Carlo Simulation Study.
    Kiss B; Picaud S; Szőri M; Jedlovszky P
    J Phys Chem A; 2019 Apr; 123(13):2935-2948. PubMed ID: 30839213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.