BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 25302384)

  • 1. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.
    Boamah MD; Sullivan KK; Shulenberger KE; Soe CM; Jacob LM; Yhee FC; Atkinson KE; Boyer MC; Haines DR; Arumainayagam CR
    Faraday Discuss; 2014; 168():249-66. PubMed ID: 25302384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared and reflectron time-of-flight mass spectroscopic study on the synthesis of glycolaldehyde in methanol (CH3OH) and methanol-carbon monoxide (CH3OH-CO) ices exposed to ionization radiation.
    Maity S; Kaiser RI; Jones BM
    Faraday Discuss; 2014; 168():485-516. PubMed ID: 25302395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraterrestrial prebiotic molecules: photochemistry vs. radiation chemistry of interstellar ices.
    Arumainayagam CR; Garrod RT; Boyer MC; Hay AK; Bao ST; Campbell JS; Wang J; Nowak CM; Arumainayagam MR; Hodge PJ
    Chem Soc Rev; 2019 Apr; 48(8):2293-2314. PubMed ID: 30815642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of complex organic molecules in methanol and methanol-carbon monoxide ices exposed to ionizing radiation--a combined FTIR and reflectron time-of-flight mass spectrometry study.
    Maity S; Kaiser RI; Jones BM
    Phys Chem Chem Phys; 2015 Feb; 17(5):3081-114. PubMed ID: 25515545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo studies of surface chemistry and nonthermal desorption involving interstellar grains.
    Herbst E; Cuppen HM
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12257-62. PubMed ID: 16894170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid- and far-infrared spectroscopic studies of the influence of temperature, ultraviolet photolysis and ion irradiation on cosmic-type ices.
    Moore MH; Hudson RL; Gerakines PA
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar; 57(4):843-58. PubMed ID: 11345258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. THz and mid-IR spectroscopy of interstellar ice analogs: methyl and carboxylic acid groups.
    Ioppolo S; McGuire BA; Allodi MA; Blake GA
    Faraday Discuss; 2014; 168():461-84. PubMed ID: 25302394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Low-Energy (<20 eV) Secondary Electrons in the Extraterrestrial Synthesis of Prebiotic Molecules.
    Wu QT; Anderson H; Watkins AK; Arora D; Barnes K; Padovani M; Shingledecker CN; Arumainayagam CR; Battat JBR
    ACS Earth Space Chem; 2024 Jan; 8(1):79-88. PubMed ID: 38264085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The formation of organic molecules in astronomical ices.
    Schutte WA
    Adv Space Res; 1995; 16(2):53-60. PubMed ID: 11543536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 2140 cm-1 (4.673 microns) solid CO band: the case for interstellar O2 and N2 and the photochemistry of nonpolar interstellar ice analogs.
    Elsila J; Allamandola LJ; Sandford SA
    Astrophys J; 1997 Apr; 479(2 Pt 1):818-38. PubMed ID: 11540158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H2 in interstellar and extragalactic ices: infrared characteristics, ultraviolet production, and implications.
    Sandford SA; Allamandola LJ
    Astrophys J; 1993 Jun; 409(2):L65-8. PubMed ID: 11540091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycine formation in CO
    Esmaili S; Bass AD; Cloutier P; Sanche L; Huels MA
    J Chem Phys; 2018 Apr; 148(16):164702. PubMed ID: 29716196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of interstellar ices.
    Allamandola LJ; Bernstein MP; Sandford SA; Walker RL
    Space Sci Rev; 1999; 90(1-2):219-32. PubMed ID: 11543288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstellar matrices: the chemical composition and evolution of interstellar ices as observed by ISO.
    d'Hendecourt L; Dartois E
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar; 57(4):669-84. PubMed ID: 11345246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Following the Interstellar History of Carbon: From the Interiors of Stars to the Surfaces of Planets.
    Ziurys LM; Halfen DT; Geppert W; Aikawa Y
    Astrobiology; 2016 Dec; 16(12):997-1012. PubMed ID: 28001448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radical reactions on interstellar icy dust grains: Experimental investigations of elementary processes.
    Tsuge M; Watanabe N
    Proc Jpn Acad Ser B Phys Biol Sci; 2023; 99(4):103-130. PubMed ID: 37121737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A vacuum ultraviolet photoionization study on the formation of methanimine (CH
    Zhu C; Frigge R; Turner AM; Abplanalp MJ; Sun BJ; Chen YL; Chang AHH; Kaiser RI
    Phys Chem Chem Phys; 2019 Jan; 21(4):1952-1962. PubMed ID: 30632569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Condensation and vaporization studies of CH3OH and NH3 ices: major implications for astrochemistry.
    Sandford SA; Allamandola LJ
    Astrophys J; 1993 Nov; 417(2):815-25. PubMed ID: 11540092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical evolution of interstellar dust, comets and the origins of life.
    Greenberg JM; Zhao N; Hage J
    Ann Phys (Paris); 1989 Apr; 14():103-31. PubMed ID: 11542180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacuum UV photodesorption of organics in the interstellar medium: an experimental study of formic acid HCOOH and methyl formate HCOOCH
    Bertin M; Basalgète R; Ocaña AJ; Féraud G; Romanzin C; Philippe L; Michaut X; Fillion JH
    Faraday Discuss; 2023 Sep; 245(0):488-507. PubMed ID: 37309601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.