These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 25302465)
21. The challenging combination of intense fluorescence and high singlet oxygen quantum yield in photostable chlorins--a contribution to theranostics. Silva EF; Schaberle FA; Monteiro CJ; Dąbrowski JM; Arnaut LG Photochem Photobiol Sci; 2013 Jul; 12(7):1187-92. PubMed ID: 23584281 [TBL] [Abstract][Full Text] [Related]
22. Temperature Sensitive Singlet Oxygen Photosensitization by LOV-Derived Fluorescent Flavoproteins. Westberg M; Bregnhøj M; Etzerodt M; Ogilby PR J Phys Chem B; 2017 Mar; 121(12):2561-2574. PubMed ID: 28257211 [TBL] [Abstract][Full Text] [Related]
23. Observation of oscillatory surface reactions of riboflavin, trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy. Sen F; Boghossian AA; Sen S; Ulissi ZW; Zhang J; Strano MS ACS Nano; 2012 Dec; 6(12):10632-45. PubMed ID: 23075271 [TBL] [Abstract][Full Text] [Related]
24. Acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids with strong two-photon absorption and high singlet oxygen quantum yield. Ke H; Li W; Zhang T; Zhu X; Tam HL; Hou A; Kwong DW; Wong WK Dalton Trans; 2012 Apr; 41(15):4536-43. PubMed ID: 22353888 [TBL] [Abstract][Full Text] [Related]
25. No Photon Wasted: An Efficient and Selective Singlet Oxygen Photosensitizing Protein. Westberg M; Bregnhøj M; Etzerodt M; Ogilby PR J Phys Chem B; 2017 Oct; 121(40):9366-9371. PubMed ID: 28892628 [TBL] [Abstract][Full Text] [Related]
26. Mesoporous silica nanoparticle facilitated drug release through cascade photosensitizer activation and cleavage of singlet oxygen sensitive linker. Lee J; Park J; Singha K; Kim WJ Chem Commun (Camb); 2013 Feb; 49(15):1545-7. PubMed ID: 23325385 [TBL] [Abstract][Full Text] [Related]
27. Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches. Hou L; Zhang X; Pijper TC; Browne WR; Feringa BL J Am Chem Soc; 2014 Jan; 136(3):910-3. PubMed ID: 24392882 [TBL] [Abstract][Full Text] [Related]
28. Photophysics of acetophenone interacting with DNA: why the road to photosensitization is open. Huix-Rotllant M; Dumont E; Ferré N; Monari A Photochem Photobiol; 2015; 91(2):323-30. PubMed ID: 25412588 [TBL] [Abstract][Full Text] [Related]
29. An improved singlet oxygen sensitizer with two-photon absorption and emission in the biological transparency window as a result of ground state symmetry-breaking. Gallavardin T; Armagnat C; Maury O; Baldeck PL; Lindgren M; Monnereau C; Andraud C Chem Commun (Camb); 2012 Feb; 48(11):1689-91. PubMed ID: 22182988 [TBL] [Abstract][Full Text] [Related]
30. Light-Harvesting Photosensitizers for Photodynamic Inactivation of Bacteria under Both Visible and Near-Infrared Excitations. Hu B; Cao X; Ahmadov MT; Ding R; Tang H; Zhang P Chem Asian J; 2016 Apr; 11(7):1092-7. PubMed ID: 26892611 [TBL] [Abstract][Full Text] [Related]
31. Intracellular singlet oxygen photosensitizers: on the road to solving the problems of sensitizer degradation, bleaching and relocalization. da Silva EF; Pimenta FM; Pedersen BW; Blaikie FH; Bosio GN; Breitenbach T; Westberg M; Bregnhøj M; Etzerodt M; Arnaut LG; Ogilby PR Integr Biol (Camb); 2016 Feb; 8(2):177-93. PubMed ID: 26878203 [TBL] [Abstract][Full Text] [Related]
32. Photochemical and photodynamic properties of vitamin B2--riboflavin and liposomes. Ioniţă MA; Ion RM; Cârstocea B Oftalmologia; 2003; 58(3):29-34. PubMed ID: 14702729 [TBL] [Abstract][Full Text] [Related]
33. The enhancement of riboflavin-mediated photo-oxidation of doxorubicin by histidine and urocanic acid. Ramu A; Mehta MM; Leaseburg T; Aleksic A Cancer Chemother Pharmacol; 2001 Apr; 47(4):338-46. PubMed ID: 11345651 [TBL] [Abstract][Full Text] [Related]
34. Photosensitizer that selectively generates singlet oxygen in nonpolar environments: photophysical mechanism and efficiency for a covalent BODIPY dimer. Zhang XF; Yang X J Phys Chem B; 2013 Aug; 117(30):9050-5. PubMed ID: 23837434 [TBL] [Abstract][Full Text] [Related]
35. Non-covalent functionalized SWNTs as delivery agents for novel Bodipy-based potential PDT sensitizers. Erbas S; Gorgulu A; Kocakusakogullari M; Akkaya EU Chem Commun (Camb); 2009 Sep; (33):4956-8. PubMed ID: 19668814 [TBL] [Abstract][Full Text] [Related]
36. Singlet oxygen quantum yield determination for a fluorene-based two-photon photosensitizer. Belfield KD; Bondar MV; Przhonska OV J Fluoresc; 2006 Jan; 16(1):111-7. PubMed ID: 16604431 [TBL] [Abstract][Full Text] [Related]
37. Influence of bromine substitution pattern on the singlet oxygen generation efficiency of two-photon absorbing chromophores. Lanoë PH; Gallavardin T; Dupin A; Maury O; Baldeck PL; Lindgren M; Monnereau C; Andraud C Org Biomol Chem; 2012 Aug; 10(31):6275-8. PubMed ID: 22744649 [TBL] [Abstract][Full Text] [Related]
38. Effects of riboflavin photosensitization on daidzein and its photosensitized derivatives. Park C; Yeo J; Park M; Park JB; Lee J J Food Sci; 2010 Oct; 75(8):C659-66. PubMed ID: 21535482 [TBL] [Abstract][Full Text] [Related]
39. Stability of meoru (Vitis coignetiea) anthocyanins under photochemically produced singlet oxygen by riboflavin. Kim M; Yoon SH; Jung M; Choe E N Biotechnol; 2010 Sep; 27(4):435-9. PubMed ID: 20085831 [TBL] [Abstract][Full Text] [Related]
40. Singlet oxygen generation enhanced by silver-pectin nanoparticles. de Melo LS; Gomes AS; Saska S; Nigoghossian K; Messaddeq Y; Ribeiro SJ; de Araujo RE J Fluoresc; 2012 Nov; 22(6):1633-8. PubMed ID: 22843254 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]