These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 25302565)

  • 1. Chemically-induced redox switching of a metalloprotein reveals thermodynamic and kinetic heterogeneity, one molecule at a time.
    Akkilic N; van der Grient F; Kamran M; Sanghamitra NJ
    Chem Commun (Camb); 2014 Dec; 50(93):14523-6. PubMed ID: 25302565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-controlled fluorescence switching of a single redox protein.
    Akkilic N; Kamran M; Stan R; Sanghamitra NJ
    Biosens Bioelectron; 2015 May; 67():747-51. PubMed ID: 25103339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring interfacial bioelectrochemistry using a FRET switch.
    Davis JJ; Burgess H; Zauner G; Kuznetsova S; Salverda J; Aartsma T; Canters GW
    J Phys Chem B; 2006 Oct; 110(41):20649-54. PubMed ID: 17034255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent cyclic voltammetry of immobilized azurin: direct observation of thermodynamic and kinetic heterogeneity.
    Salverda JM; Patil AV; Mizzon G; Kuznetsova S; Zauner G; Akkilic N; Canters GW; Davis JJ; Heering HA; Aartsma TJ
    Angew Chem Int Ed Engl; 2010 Aug; 49(33):5776-9. PubMed ID: 20629001
    [No Abstract]   [Full Text] [Related]  

  • 5. Probing redox proteins on a gold surface by single molecule fluorescence spectroscopy.
    Elmalk AT; Salverda JM; Tabares LC; Canters GW; Aartsma TJ
    J Chem Phys; 2012 Jun; 136(23):235101. PubMed ID: 22779620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan-accelerated electron flow through proteins.
    Shih C; Museth AK; Abrahamsson M; Blanco-Rodriguez AM; Di Bilio AJ; Sudhamsu J; Crane BR; Ronayne KL; Towrie M; Vlcek A; Richards JH; Winkler JR; Gray HB
    Science; 2008 Jun; 320(5884):1760-2. PubMed ID: 18583608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of polarization effect in the study of metalloproteins: application of polarized protein specific charge scheme in predicting the reduction potential of azurin.
    Wei C; Lazim R; Zhang D
    Proteins; 2014 Sep; 82(9):2209-19. PubMed ID: 24753270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oxidation state of a protein observed molecule-by-molecule.
    Schmauder R; Librizzi F; Canters GW; Schmidt T; Aartsma TJ
    Chemphyschem; 2005 Jul; 6(7):1381-6. PubMed ID: 15991272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gated electron transfers and electron pathways in azurin: a NMR dynamic study at multiple fields and temperatures.
    Zhuravleva AV; Korzhnev DM; Kupce E; Arseniev AS; Billeter M; Orekhov VY
    J Mol Biol; 2004 Oct; 342(5):1599-611. PubMed ID: 15364584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-mediated electron transfer between protein redox centers.
    Migliore A; Corni S; Felice RD; Molinari E
    J Phys Chem B; 2007 Apr; 111(14):3774-81. PubMed ID: 17388538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualizing and tuning thermodynamic dispersion in metalloprotein monolayers.
    Patil AV; Davis JJ
    J Am Chem Soc; 2010 Dec; 132(47):16938-44. PubMed ID: 21067185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence Correlation Spectroscopy of Labeled Azurin Reveals Photoinduced Electron Transfer between Label and Cu Center.
    Andreoni A; Sen S; Hagedoorn PL; Buma WJ; Aartsma TJ; Canters GW
    Chemistry; 2018 Jan; 24(3):646-654. PubMed ID: 29064125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemistry. Electron relay in proteins.
    Bollinger JM
    Science; 2008 Jun; 320(5884):1730-1. PubMed ID: 18583602
    [No Abstract]   [Full Text] [Related]  

  • 14. Calculation of the redox potential of the protein azurin and some mutants.
    van den Bosch M; Swart M; Snijders JG; Berendsen HJ; Mark AE; Oostenbrink C; van Gunsteren WF; Canters GW
    Chembiochem; 2005 Apr; 6(4):738-46. PubMed ID: 15747387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional catalysis by copper-containing nitrite reductase.
    Wijma HJ; Canters GW; de Vries S; Verbeet MP
    Biochemistry; 2004 Aug; 43(32):10467-74. PubMed ID: 15301545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer from quinohemoprotein alcohol dehydrogenase to blue copper protein azurin in the alcohol oxidase respiratory chain of Pseudomonas putida HK5.
    Matsushita K; Yamashita T; Aoki N; Toyama H; Adachi O
    Biochemistry; 1999 May; 38(19):6111-8. PubMed ID: 10320337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique complex between bacterial azurin and tumor-suppressor protein p53.
    Apiyo D; Wittung-Stafshede P
    Biochem Biophys Res Commun; 2005 Jul; 332(4):965-8. PubMed ID: 15913547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water effects on electron transfer in azurin dimers.
    Migliore A; Corni S; Di Felice R; Molinari E
    J Phys Chem B; 2006 Nov; 110(47):23796-800. PubMed ID: 17125342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of metalloprotein reduction potential: compensation phenomena in the reduction thermodynamics of blue copper proteins.
    Battistuzzi G; Bellei M; Borsari M; Canters GW; de Waal E; Jeuken LJ; Ranieri A; Sola M
    Biochemistry; 2003 Aug; 42(30):9214-20. PubMed ID: 12885256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the stability and unfolding pathways of azurin from Pseudomonas aeruginosa through the combination of denaturating osmolytes.
    Huang Q; Quiñones E
    Arch Biochem Biophys; 2008 Sep; 477(1):175-82. PubMed ID: 18515056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.