These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25302701)

  • 21. Adsorptive removal of trivalent and pentavalent arsenic from aqueous solutions using iron and copper impregnated melanin extracted from the marine bacterium Pseudomonas stutzeri.
    Manirethan V; Raval K; Balakrishnan RM
    Environ Pollut; 2020 Feb; 257():113576. PubMed ID: 31744681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization, equilibrium, kinetic, thermodynamic and desorption studies on the sorption of Cu(II) from an aqueous solution using marine green algae: Halimeda gracilis.
    Jayakumar R; Rajasimman M; Karthikeyan C
    Ecotoxicol Environ Saf; 2015 Nov; 121():199-210. PubMed ID: 25866206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution.
    Sari A; Tuzen M; Citak D; Soylak M
    J Hazard Mater; 2007 Sep; 148(1-2):387-94. PubMed ID: 17386972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sorption of sunset yellow dye by weak base anion exchanger-kinetic and equilibrium studies.
    Wawrzkiewicz M
    Environ Technol; 2011; 32(3-4):455-65. PubMed ID: 21780713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sorption characteristics and separation of tellurium ions from aqueous solutions using nano-TiO2.
    Zhang L; Zhang M; Guo X; Liu X; Kang P; Chen X
    Talanta; 2010 Dec; 83(2):344-50. PubMed ID: 21111144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite.
    Munagapati VS; Kim DS
    Ecotoxicol Environ Saf; 2017 Jul; 141():226-234. PubMed ID: 28349874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics.
    Wei Y; Wei S; Liu C; Chen T; Tang Y; Ma J; Yin K; Luo S
    Water Res; 2019 Dec; 167():115107. PubMed ID: 31563708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption of arsenic(V) by iron-oxide-coated diatomite (IOCD).
    Pan YF; Chiou CT; Lin TF
    Environ Sci Pollut Res Int; 2010 Sep; 17(8):1401-10. PubMed ID: 20383794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption and removal of arsenic (V) using crystalline manganese (II,III) oxide: Kinetics, equilibrium, effect of pH and ionic strength.
    Babaeivelni K; Khodadoust AP; Bogdan D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(13):1462-73. PubMed ID: 25137534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of Pb(II) ions from aqueous media using epichlorohydrin crosslinked chitosan Schiff's base@Fe
    Yan Y; Yuvaraja G; Liu C; Kong L; Guo K; Reddy GM; Zyryanov GV
    Int J Biol Macromol; 2018 Oct; 117():1305-1313. PubMed ID: 29852227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.
    Rahmani-Sani A; Hosseini-Bandegharaei A; Hosseini SH; Kharghani K; Zarei H; Rastegar A
    J Hazard Mater; 2015 Apr; 286():152-63. PubMed ID: 25576783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sorption potential of impregnated charcoal for removal of heavy metals from phosphoric acid.
    El-Sofany EA; Zaher WF; Aly HF
    J Hazard Mater; 2009 Jun; 165(1-3):623-9. PubMed ID: 19038497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of fluoride from aqueous environment by modified Amberlite resin.
    Solangi IB; Memon S; Bhanger MI
    J Hazard Mater; 2009 Nov; 171(1-3):815-9. PubMed ID: 19608334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of green marine algal-based biochar for remediation of arsenic(V) from contaminated waters in batch and column mode of operation.
    Senthilkumar R; Reddy Prasad DM; Govindarajan L; Saravanakumar K; Naveen Prasad BS
    Int J Phytoremediation; 2020; 22(3):279-286. PubMed ID: 31475570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization, preparation, and uses of nanomagnetic Fe
    Ahmadifar Z; Dadvand Koohi A
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19687-19700. PubMed ID: 29736646
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced arsenate removal by Fe-impregnated canola straw: assessment of XANES solid-phase speciation, impacts of solution properties, sorption mechanisms, and evolutionary polynomial regression (EPR) models.
    Zoroufchi Benis K; Shakouri M; McPhedran K; Soltan J
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12659-12676. PubMed ID: 33085008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenic sorption onto laterite iron concretions: temperature effect.
    Partey F; Norman D; Ndur S; Nartey R
    J Colloid Interface Sci; 2008 May; 321(2):493-500. PubMed ID: 18346752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preloading hydrous ferric oxide into granular activated carbon for arsenic removal.
    Jang M; Chen W; Cannon FS
    Environ Sci Technol; 2008 May; 42(9):3369-74. PubMed ID: 18522120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles.
    Hao YM; Man C; Hu ZB
    J Hazard Mater; 2010 Dec; 184(1-3):392-399. PubMed ID: 20837378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superparamagnetic nanomaterial Fe3O4-TiO2 for the removal of As(V) and As(III) from aqueous solutions.
    Beduk F
    Environ Technol; 2016; 37(14):1790-801. PubMed ID: 26831455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.