BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 25302708)

  • 1. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.
    Molkov YI; Shevtsova NA; Park C; Ben-Tal A; Smith JC; Rubin JE; Rybak IA
    PLoS One; 2014; 9(10):e109894. PubMed ID: 25302708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats.
    de Britto AA; Moraes DJ
    J Physiol; 2017 Mar; 595(6):2043-2064. PubMed ID: 28004411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between the retrotrapezoid nucleus and the parafacial respiratory group to regulate active expiration and sympathetic activity in rats.
    Zoccal DB; Silva JN; Barnett WH; Lemes EV; Falquetto B; Colombari E; Molkov YI; Moreira TS; Takakura AC
    Am J Physiol Lung Cell Mol Physiol; 2018 Nov; 315(5):L891-L909. PubMed ID: 30188747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The parafacial respiratory group and the control of active expiration.
    Pisanski A; Pagliardini S
    Respir Physiol Neurobiol; 2019 Jul; 265():153-160. PubMed ID: 29933053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory control of active expiration by the Bötzinger complex in rats.
    Flor KC; Barnett WH; Karlen-Amarante M; Molkov YI; Zoccal DB
    J Physiol; 2020 Nov; 598(21):4969-4994. PubMed ID: 32621515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of active expiration by serotoninergic mechanisms of the ventral medulla of rats.
    Lemes EV; Colombari E; Zoccal DB
    J Appl Physiol (1985); 2016 Nov; 121(5):1135-1144. PubMed ID: 27660299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Late-expiratory activity: emergence and interactions with the respiratory CpG.
    Molkov YI; Abdala AP; Bacak BJ; Smith JC; Paton JF; Rybak IA
    J Neurophysiol; 2010 Nov; 104(5):2713-29. PubMed ID: 20884764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABAergic neurons of the medullary raphe regulate active expiration during hypercapnia.
    Silva JDN; Oliveira LM; Souza FC; Moreira TS; Takakura AC
    J Neurophysiol; 2020 May; 123(5):1933-1943. PubMed ID: 32267190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Contribution of the Retrotrapezoid Nucleus and C1 Neurons to Active Expiration and Arousal in Rats.
    Souza GMPR; Stornetta RL; Stornetta DS; Abbott SBG; Guyenet PG
    J Neurosci; 2020 Nov; 40(45):8683-8697. PubMed ID: 32973046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential modulation of active expiration during hypercapnia by the medullary raphe in unanesthetized rats.
    Leirão IP; Zoccal DB; Gargaglioni LH; da Silva GSF
    Pflugers Arch; 2020 Nov; 472(11):1563-1576. PubMed ID: 32914212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroanatomical and physiological evidence that the retrotrapezoid nucleus/parafacial region regulates expiration in adult rats.
    Silva JN; Tanabe FM; Moreira TS; Takakura AC
    Respir Physiol Neurobiol; 2016 Jun; 227():9-22. PubMed ID: 26900003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Kölliker-Fuse nucleus orchestrates the timing of expiratory abdominal nerve bursting.
    Barnett WH; Jenkin SEM; Milsom WK; Paton JFR; Abdala AP; Molkov YI; Zoccal DB
    J Neurophysiol; 2018 Feb; 119(2):401-412. PubMed ID: 29070631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholinergic modulation of the parafacial respiratory group.
    Boutin RC; Alsahafi Z; Pagliardini S
    J Physiol; 2017 Feb; 595(4):1377-1392. PubMed ID: 27808424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermittent hypoxia-induced sensitization of central chemoreceptors contributes to sympathetic nerve activity during late expiration in rats.
    Molkov YI; Zoccal DB; Moraes DJ; Paton JF; Machado BH; Rybak IA
    J Neurophysiol; 2011 Jun; 105(6):3080-91. PubMed ID: 21471394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phox2b-expressing neurons of the parafacial region regulate breathing rate, inspiration, and expiration in conscious rats.
    Abbott SB; Stornetta RL; Coates MB; Guyenet PG
    J Neurosci; 2011 Nov; 31(45):16410-22. PubMed ID: 22072691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expiration: breathing's other face.
    Jenkin SE; Milsom WK
    Prog Brain Res; 2014; 212():131-47. PubMed ID: 25194197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active expiratory oscillator regulates nasofacial and oral motor activities in rats.
    de Britto AA; Magalhães KS; da Silva MP; Paton JFR; Moraes DJA
    Exp Physiol; 2020 Feb; 105(2):379-392. PubMed ID: 31820827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interacting oscillations in neural control of breathing: modeling and qualitative analysis.
    Rubin JE; Bacak BJ; Molkov YI; Shevtsova NA; Smith JC; Rybak IA
    J Comput Neurosci; 2011 Jun; 30(3):607-32. PubMed ID: 20927576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-dependent control of breathing by the retrotrapezoid nucleus.
    Burke PG; Kanbar R; Basting TM; Hodges WM; Viar KE; Stornetta RL; Guyenet PG
    J Physiol; 2015 Jul; 593(13):2909-26. PubMed ID: 25820491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypercapnia-induced active expiration increases in sleep and enhances ventilation in unanaesthetized rats.
    Leirão IP; Silva CA; Gargaglioni LH; da Silva GSF
    J Physiol; 2018 Aug; 596(15):3271-3283. PubMed ID: 28776683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.