These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 25302907)
1. Infinite lifetime of underwater superhydrophobic states. Xu M; Sun G; Kim CJ Phys Rev Lett; 2014 Sep; 113(13):136103. PubMed ID: 25302907 [TBL] [Abstract][Full Text] [Related]
2. Metastable states and wetting transition of submerged superhydrophobic structures. Lv P; Xue Y; Shi Y; Lin H; Duan H Phys Rev Lett; 2014 May; 112(19):196101. PubMed ID: 24877948 [TBL] [Abstract][Full Text] [Related]
3. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability. Lee BJ; Zhang Z; Baek S; Kim S; Kim D; Yong K Sci Rep; 2016 Apr; 6():24653. PubMed ID: 27095674 [TBL] [Abstract][Full Text] [Related]
4. Brightness of Microtrench Superhydrophobic Surfaces and Visual Detection of Intermediate Wetting States. Yu N; Kiani S; Xu M; Kim CC Langmuir; 2021 Jan; 37(3):1206-1214. PubMed ID: 33428410 [TBL] [Abstract][Full Text] [Related]
5. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing. Seo D; Lee C; Nam Y Langmuir; 2014 Dec; 30(51):15468-76. PubMed ID: 25466626 [TBL] [Abstract][Full Text] [Related]
6. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Lee C; Kim CJ Phys Rev Lett; 2011 Jan; 106(1):014502. PubMed ID: 21231747 [TBL] [Abstract][Full Text] [Related]
7. Plastron Regeneration on Submerged Superhydrophobic Surfaces Using In Situ Gas Generation by Chemical Reaction. Panchanathan D; Rajappan A; Varanasi KK; McKinley GH ACS Appl Mater Interfaces; 2018 Oct; 10(39):33684-33692. PubMed ID: 30184437 [TBL] [Abstract][Full Text] [Related]
8. Underwater sustainability of the "Cassie" state of wetting. Bobji MS; Kumar SV; Asthana A; Govardhan RN Langmuir; 2009 Oct; 25(20):12120-6. PubMed ID: 19821621 [TBL] [Abstract][Full Text] [Related]
9. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
10. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition. Liu G; Fu L; Rode AV; Craig VS Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574 [TBL] [Abstract][Full Text] [Related]
11. General formulations for predicting longevity of submerged superhydrophobic surfaces composed of pores or posts. Hemeda AA; Tafreshi HV Langmuir; 2014 Sep; 30(34):10317-27. PubMed ID: 25109908 [TBL] [Abstract][Full Text] [Related]
12. Droplet detachment by air flow for microstructured superhydrophobic surfaces. Hao P; Lv C; Yao Z Langmuir; 2013 Apr; 29(17):5160-6. PubMed ID: 23557076 [TBL] [Abstract][Full Text] [Related]
13. Diffraction patterns of a water-submerged superhydrophobic grating under pressure. Lei L; Li H; Shi J; Chen Y Langmuir; 2010 Mar; 26(5):3666-9. PubMed ID: 19810712 [TBL] [Abstract][Full Text] [Related]
14. Dynamic air layer on textured superhydrophobic surfaces. Vakarelski IU; Chan DY; Marston JO; Thoroddsen ST Langmuir; 2013 Sep; 29(35):11074-81. PubMed ID: 23919719 [TBL] [Abstract][Full Text] [Related]
15. Characterization of underwater stability of superhydrophobic surfaces using quartz crystal microresonators. Lee M; Yim C; Jeon S Langmuir; 2014 Jul; 30(27):7931-5. PubMed ID: 24978595 [TBL] [Abstract][Full Text] [Related]
16. Robust superhydrophobic silicon without a low surface-energy hydrophobic coating. Hoshian S; Jokinen V; Somerkivi V; Lokanathan AR; Franssila S ACS Appl Mater Interfaces; 2015 Jan; 7(1):941-9. PubMed ID: 25522296 [TBL] [Abstract][Full Text] [Related]
18. Investigating the superhydrophobic behavior for underwater surfaces using impedance-based methods. Tuberquia JC; Song WS; Jennings GK Anal Chem; 2011 Aug; 83(16):6184-90. PubMed ID: 21696148 [TBL] [Abstract][Full Text] [Related]
19. Role of trapped air in the formation of cell-and-protein micropatterns on superhydrophobic/superhydrophilic microtemplated surfaces. Huang Q; Lin L; Yang Y; Hu R; Vogler EA; Lin C Biomaterials; 2012 Nov; 33(33):8213-20. PubMed ID: 22917736 [TBL] [Abstract][Full Text] [Related]