BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25303714)

  • 21. Iron-oxidizing bacteria in marine environments: recent progresses and future directions.
    Makita H
    World J Microbiol Biotechnol; 2018 Jul; 34(8):110. PubMed ID: 29974320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Niche partitioning in the Rimicaris exoculata holobiont: the case of the first symbiotic Zetaproteobacteria.
    Cambon-Bonavita MA; Aubé J; Cueff-Gauchard V; Reveillaud J
    Microbiome; 2021 Apr; 9(1):87. PubMed ID: 33845886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neutrophilic iron-oxidizing "zetaproteobacteria" and mild steel corrosion in nearshore marine environments.
    McBeth JM; Little BJ; Ray RI; Farrar KM; Emerson D
    Appl Environ Microbiol; 2011 Feb; 77(4):1405-12. PubMed ID: 21131509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine, USA.
    McBeth JM; Fleming EJ; Emerson D
    Environ Microbiol Rep; 2013 Jun; 5(3):453-63. PubMed ID: 23754725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative Analysis of Microbial Communities in Iron-Dominated Flocculent Mats in Deep-Sea Hydrothermal Environments.
    Makita H; Kikuchi S; Mitsunobu S; Takaki Y; Yamanaka T; Toki T; Noguchi T; Nakamura K; Abe M; Hirai M; Yamamoto M; Uematsu K; Miyazaki J; Nunoura T; Takahashi Y; Takai K
    Appl Environ Microbiol; 2016 Oct; 82(19):5741-55. PubMed ID: 27422841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic-Anoxic Transition Zone.
    Chiu BK; Kato S; McAllister SM; Field EK; Chan CS
    Front Microbiol; 2017; 8():1280. PubMed ID: 28769885
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough.
    Kato S; Yanagawa K; Sunamura M; Takano Y; Ishibashi J; Kakegawa T; Utsumi M; Yamanaka T; Toki T; Noguchi T; Kobayashi K; Moroi A; Kimura H; Kawarabayasi Y; Marumo K; Urabe T; Yamagishi A
    Environ Microbiol; 2009 Dec; 11(12):3210-22. PubMed ID: 19691504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Seafloor incubation experiments at deep-sea hydrothermal vents reveal distinct biogeographic signatures of autotrophic communities.
    Fullerton H; Smith L; Enriquez A; Butterfield D; Wheat CG; Moyer CL
    FEMS Microbiol Ecol; 2024 Jan; 100(2):. PubMed ID: 38200713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative PCR analysis of functional genes in iron-rich microbial mats at an active hydrothermal vent system (Lō'ihi Seamount, Hawai'i).
    Jesser KJ; Fullerton H; Hager KW; Moyer CL
    Appl Environ Microbiol; 2015 May; 81(9):2976-84. PubMed ID: 25681182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean.
    Mattes TE; Nunn BL; Marshall KT; Proskurowski G; Kelley DS; Kawka OE; Goodlett DR; Hansell DA; Morris RM
    ISME J; 2013 Dec; 7(12):2349-60. PubMed ID: 23842654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions.
    Field EK; Kato S; Findlay AJ; MacDonald DJ; Chiu BK; Luther GW; Chan CS
    Geobiology; 2016 Sep; 14(5):499-508. PubMed ID: 27384464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents.
    McAllister SM; Vandzura R; Keffer JL; Polson SW; Chan CS
    ISME J; 2021 May; 15(5):1271-1286. PubMed ID: 33328652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fine-Scale Biogeography and the Inference of Ecological Interactions Among Neutrophilic Iron-Oxidizing Zetaproteobacteria as Determined by a Rule-Based Microbial Network.
    Duchinski K; Moyer CL; Hager K; Fullerton H
    Front Microbiol; 2019; 10():2389. PubMed ID: 31708884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters.
    Dang H; Chen R; Wang L; Shao S; Dai L; Ye Y; Guo L; Huang G; Klotz MG
    Environ Microbiol; 2011 Nov; 13(11):3059-74. PubMed ID: 21951343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes.
    Forget NL; Murdock SA; Juniper SK
    Geobiology; 2010 Dec; 8(5):417-32. PubMed ID: 20533949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph.
    Barco RA; Emerson D; Sylvan JB; Orcutt BN; Jacobson Meyers ME; Ramírez GA; Zhong JD; Edwards KJ
    Appl Environ Microbiol; 2015 Sep; 81(17):5927-37. PubMed ID: 26092463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron Oxidation by a Fused Cytochrome-Porin Common to Diverse Iron-Oxidizing Bacteria.
    Keffer JL; McAllister SM; Garber AI; Hallahan BJ; Sutherland MC; Rozovsky S; Chan CS
    mBio; 2021 Aug; 12(4):e0107421. PubMed ID: 34311573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Linking Zetaproteobacterial diversity and substratum type in iron-rich microbial mats from the Lucky Strike hydrothermal field (EMSO-Azores observatory).
    Astorch-Cardona A; Odin GP; Chavagnac V; Dolla A; Gaussier H; Rommevaux C
    Appl Environ Microbiol; 2024 Feb; 90(2):e0204123. PubMed ID: 38193671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic].
    Xu H; Jiang L; Li S; Zhong T; Lai Q; Shao Z
    Wei Sheng Wu Xue Bao; 2016 Jan; 56(1):88-100. PubMed ID: 27305783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions.
    He T; Zhang X
    Mar Biotechnol (NY); 2016 Apr; 18(2):232-41. PubMed ID: 26626941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.