These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Chitosan-silica hybrid porous membranes. Pandis C; Madeira S; Matos J; Kyritsis A; Mano JF; Ribelles JL Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():553-61. PubMed ID: 25063153 [TBL] [Abstract][Full Text] [Related]
3. Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering. Demirdögen B; Bonilla CE; Trujillo S; Perilla JE; Elcin AE; Elcin YM; Ribelles JL J Biomed Mater Res A; 2014 Sep; 102(9):3229-36. PubMed ID: 24167153 [TBL] [Abstract][Full Text] [Related]
4. Effect of inorganic/organic ratio and chemical coupling on the performance of porous silica/chitosan hybrid scaffolds. Wang D; Liu W; Feng Q; Dong C; Liu Q; Duan L; Huang J; Zhu W; Li Z; Xiong J; Liang Y; Chen J; Sun R; Bian L; Wang D Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):969-975. PubMed ID: 27772728 [TBL] [Abstract][Full Text] [Related]
5. New porous polycaprolactone-silica composites for bone regeneration. Plazas Bonilla CE; Trujillo S; Demirdögen B; Perilla JE; Murat Elcin Y; Gómez Ribelles JL Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():418-26. PubMed ID: 24857510 [TBL] [Abstract][Full Text] [Related]
6. Novel porous scaffolds of poly(lactic acid) produced by phase-separation using room temperature ionic liquid and the assessments of biocompatibility. Lee HY; Jin GZ; Shin US; Kim JH; Kim HW J Mater Sci Mater Med; 2012 May; 23(5):1271-9. PubMed ID: 22382734 [TBL] [Abstract][Full Text] [Related]
7. Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid-nanohydroxyapatite fiber scaffolds. Morelli S; Salerno S; Holopainen J; Ritala M; De Bartolo L J Biotechnol; 2015 Jun; 204():53-62. PubMed ID: 25858154 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328 [TBL] [Abstract][Full Text] [Related]
9. Monolithic calcium phosphate/poly(lactic acid) composite versus calcium phosphate-coated poly(lactic acid) for support of osteogenic differentiation of human mesenchymal stromal cells. Tahmasebi Birgani Z; van Blitterswijk CA; Habibovic P J Mater Sci Mater Med; 2016 Mar; 27(3):54. PubMed ID: 26787486 [TBL] [Abstract][Full Text] [Related]
10. The role of nanofibrous structure in osteogenic differentiation of human mesenchymal stem cells with serial passage. Nguyen LT; Liao S; Ramakrishna S; Chan CK Nanomedicine (Lond); 2011 Aug; 6(6):961-74. PubMed ID: 21707296 [TBL] [Abstract][Full Text] [Related]
11. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431 [TBL] [Abstract][Full Text] [Related]
12. Enhanced cytocompatibility and osteoinductive properties of sol-gel-derived silica/zirconium dioxide coatings by metformin functionalization. Śmieszek A; Szydlarska J; Mucha A; Chrapiec M; Marycz K J Biomater Appl; 2017 Nov; 32(5):570-586. PubMed ID: 29113566 [TBL] [Abstract][Full Text] [Related]
13. Modular polylactic acid microparticle-based scaffolds prepared via microfluidic emulsion/solvent displacement process: fabrication, characterization, and in vitro mesenchymal stem cells interaction study. Salerno A; Levato R; Mateos-Timoneda MA; Engel E; Netti PA; Planell JA J Biomed Mater Res A; 2013 Mar; 101(3):720-32. PubMed ID: 22941938 [TBL] [Abstract][Full Text] [Related]
14. Composite membranes of poly(lactic acid) with zinc-added bioactive glass as a guiding matrix for osteogenic differentiation of bone marrow mesenchymal stem cells. Oh SA; Won JE; Kim HW J Biomater Appl; 2012 Nov; 27(4):413-22. PubMed ID: 21750183 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable and adjustable sol-gel glass based hybrid scaffolds from multi-armed oligomeric building blocks. Kascholke C; Hendrikx S; Flath T; Kuzmenka D; Dörfler HM; Schumann D; Gressenbuch M; Schulze FP; Schulz-Siegmund M; Hacker MC Acta Biomater; 2017 Nov; 63():336-349. PubMed ID: 28927930 [TBL] [Abstract][Full Text] [Related]
17. Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials. Danoux CB; Bassett DC; Othman Z; Rodrigues AI; Reis RL; Barralet JE; van Blitterswijk CA; Habibovic P Acta Biomater; 2015 Apr; 17():1-15. PubMed ID: 25676583 [TBL] [Abstract][Full Text] [Related]
18. Feasibility of silica-hybridized collagen hydrogels as three-dimensional cell matrices for hard tissue engineering. Yu HS; Lee EJ; Seo SJ; Knowles JC; Kim HW J Biomater Appl; 2015 Sep; 30(3):338-50. PubMed ID: 26079389 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of nanofibrous scaffold using a PLA and hagfish thread keratin composite; its effect on cell adherence, growth, and osteoblast differentiation. Kim BS; Park KE; Park WH; Lee J Biomed Mater; 2013 Aug; 8(4):045006. PubMed ID: 23735650 [TBL] [Abstract][Full Text] [Related]
20. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Ko EK; Jeong SI; Rim NG; Lee YM; Shin H; Lee BK Tissue Eng Part A; 2008 Dec; 14(12):2105-19. PubMed ID: 18788980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]