These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 25304220)
1. Sectoral variations in the distribution of axonal cytoskeleton proteins in the human optic nerve head. Kang MH; Law-Davis S; Balaratnasingam C; Yu DY Exp Eye Res; 2014 Nov; 128():141-50. PubMed ID: 25304220 [TBL] [Abstract][Full Text] [Related]
2. Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure. Balaratnasingam C; Morgan WH; Bass L; Matich G; Cringle SJ; Yu DY Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3632-44. PubMed ID: 17652733 [TBL] [Abstract][Full Text] [Related]
3. Heterogeneous distribution of axonal cytoskeleton proteins in the human optic nerve. Balaratnasingam C; Morgan WH; Johnstone V; Cringle SJ; Yu DY Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2824-38. PubMed ID: 19168905 [TBL] [Abstract][Full Text] [Related]
4. Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins. Balaratnasingam C; Morgan WH; Bass L; Cringle SJ; Yu DY Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):986-99. PubMed ID: 18326722 [TBL] [Abstract][Full Text] [Related]
5. Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions. Balaratnasingam C; Kang MH; Yu P; Chan G; Morgan WH; Cringle SJ; Yu DY Exp Eye Res; 2014 Apr; 121():11-22. PubMed ID: 24560677 [TBL] [Abstract][Full Text] [Related]
6. Time-dependent effects of focal retinal ischemia on axonal cytoskeleton proteins. Balaratnasingam C; Morgan WH; Bass L; Kang M; Cringle SJ; Yu DY Invest Ophthalmol Vis Sci; 2010 Jun; 51(6):3019-28. PubMed ID: 20089877 [TBL] [Abstract][Full Text] [Related]
7. Microvascular Density Is Associated With Retinal Ganglion Cell Axonal Volume in the Laminar Compartments of the Human Optic Nerve Head. Kang MH; Suo M; Balaratnasingam C; Yu PK; Morgan WH; Yu DY Invest Ophthalmol Vis Sci; 2018 Mar; 59(3):1562-1570. PubMed ID: 29625480 [TBL] [Abstract][Full Text] [Related]
8. Increase in dephosphorylation of the heavy neurofilament subunit in the monkey chronic glaucoma model. Kashiwagi K; Ou B; Nakamura S; Tanaka Y; Suzuki M; Tsukahara S Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):154-9. PubMed ID: 12506068 [TBL] [Abstract][Full Text] [Related]
9. Quantitative analysis of astrocyte and axonal density relationships: Glia to neuron ratio in the optic nerve laminar regions. Chan G; Morgan WH; Yu DY; Balaratnasingam C Exp Eye Res; 2020 Sep; 198():108154. PubMed ID: 32712181 [TBL] [Abstract][Full Text] [Related]
10. Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma. Martin KR; Quigley HA; Valenta D; Kielczewski J; Pease ME Exp Eye Res; 2006 Aug; 83(2):255-62. PubMed ID: 16546168 [TBL] [Abstract][Full Text] [Related]
11. A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice. Korneva A; Schaub J; Jefferys J; Kimball E; Pease ME; Nawathe M; Johnson TV; Pitha I; Quigley H Exp Eye Res; 2020 Jul; 196():108035. PubMed ID: 32353427 [TBL] [Abstract][Full Text] [Related]
13. Morphometric characteristics of central retinal artery and vein endothelium in the normal human optic nerve head. Kang MH; Balaratnasingam C; Yu PK; Morgan WH; McAllister IL; Cringle SJ; Yu DY Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1359-67. PubMed ID: 21071729 [TBL] [Abstract][Full Text] [Related]
14. Upregulation of EphB2 and ephrin-B2 at the optic nerve head of DBA/2J glaucomatous mice coincides with axon loss. Du J; Tran T; Fu C; Sretavan DW Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5567-81. PubMed ID: 18055806 [TBL] [Abstract][Full Text] [Related]
15. Retrograde axonal transport obstruction of brain-derived neurotrophic factor (BDNF) and its TrkB receptor in the retina and optic nerve of American Cocker Spaniel dogs with spontaneous glaucoma. Iwabe S; Moreno-Mendoza NA; Trigo-Tavera F; Crowder C; García-Sánchez GA Vet Ophthalmol; 2007; 10 Suppl 1():12-9. PubMed ID: 17973830 [TBL] [Abstract][Full Text] [Related]
16. Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure. Pena JD; Agapova O; Gabelt BT; Levin LA; Lucarelli MJ; Kaufman PL; Hernandez MR Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2303-14. PubMed ID: 11527944 [TBL] [Abstract][Full Text] [Related]
17. The pathogenic role of transforming growth factor-β2 in glaucomatous damage to the optic nerve head. Fuchshofer R Exp Eye Res; 2011 Aug; 93(2):165-9. PubMed ID: 20708611 [TBL] [Abstract][Full Text] [Related]
18. Histomorphometric measurements in human and dog optic nerve and an estimation of optic nerve pressure gradients in human. Balaratnasingam C; Morgan WH; Johnstone V; Pandav SS; Cringle SJ; Yu DY Exp Eye Res; 2009 Nov; 89(5):618-28. PubMed ID: 19523943 [TBL] [Abstract][Full Text] [Related]
19. Distortion of axonal cytoskeleton: an early sign of glaucomatous damage. Huang X; Kong W; Zhou Y; Gregori G Invest Ophthalmol Vis Sci; 2011 May; 52(6):2879-88. PubMed ID: 21245391 [TBL] [Abstract][Full Text] [Related]
20. Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry. Sigal IA; Flanagan JG; Tertinegg I; Ethier CR Biomech Model Mechanobiol; 2009 Apr; 8(2):85-98. PubMed ID: 18309526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]