BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 25304460)

  • 1. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates.
    Radek A; Krumbach K; Gätgens J; Wendisch VF; Wiechert W; Bott M; Noack S; Marienhagen J
    J Biotechnol; 2014 Dec; 192 Pt A():156-60. PubMed ID: 25304460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alone at last! - Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in
    Brüsseler C; Späth A; Sokolowsky S; Marienhagen J
    Metab Eng Commun; 2019 Dec; 9():e00090. PubMed ID: 31016135
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway.
    Borgström C; Wasserstrom L; Almqvist H; Broberg K; Klein B; Noack S; Lidén G; Gorwa-Grauslund MF
    Metab Eng; 2019 Sep; 55():1-11. PubMed ID: 31150803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.
    Radek A; Müller MF; Gätgens J; Eggeling L; Krumbach K; Marienhagen J; Noack S
    J Biotechnol; 2016 Aug; 231():160-166. PubMed ID: 27297548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microaerobic growth-decoupled production of α-ketoglutarate and succinate from xylose in a one-pot process using Corynebacterium glutamicum.
    Tenhaef N; Kappelmann J; Eich A; Weiske M; Brieß L; Brüsseler C; Marienhagen J; Wiechert W; Noack S
    Biotechnol J; 2021 Sep; 16(9):e2100043. PubMed ID: 34089621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose.
    Lee J; Saddler JN; Um Y; Woo HM
    Microb Cell Fact; 2016 Jan; 15():20. PubMed ID: 26801253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
    Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM
    J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.
    Kawaguchi H; Yoshihara K; Hara KY; Hasunuma T; Ogino C; Kondo A
    Microb Cell Fact; 2018 May; 17(1):76. PubMed ID: 29773073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway.
    Rossoni L; Carr R; Baxter S; Cortis R; Thorpe T; Eastham G; Stephens G
    Microbiology (Reading); 2018 Mar; 164(3):287-298. PubMed ID: 29458683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The myo-inositol/proton symporter IolT1 contributes to d-xylose uptake in Corynebacterium glutamicum.
    Brüsseler C; Radek A; Tenhaef N; Krumbach K; Noack S; Marienhagen J
    Bioresour Technol; 2018 Feb; 249():953-961. PubMed ID: 29145122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global Cellular Metabolic Rewiring Adapts Corynebacterium glutamicum to Efficient Nonnatural Xylose Utilization.
    Sun X; Mao Y; Luo J; Liu P; Jiang M; He G; Zhang Z; Cao Q; Shen J; Ma H; Chen T; Wang Z
    Appl Environ Microbiol; 2022 Dec; 88(23):e0151822. PubMed ID: 36383019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
    Gopinath V; Meiswinkel TM; Wendisch VF; Nampoothiri KM
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):985-96. PubMed ID: 21796382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Vertès AA; Okino S; Inui M; Yukawa H
    Appl Environ Microbiol; 2006 May; 72(5):3418-28. PubMed ID: 16672486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic and process engineering for microbial production of protocatechuate with Corynebacterium glutamicum.
    Labib M; Görtz J; Brüsseler C; Kallscheuer N; Gätgens J; Jupke A; Marienhagen J; Noack S
    Biotechnol Bioeng; 2021 Nov; 118(11):4414-4427. PubMed ID: 34343343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniaturized and automated adaptive laboratory evolution: Evolving Corynebacterium glutamicum towards an improved d-xylose utilization.
    Radek A; Tenhaef N; Müller MF; Brüsseler C; Wiechert W; Marienhagen J; Polen T; Noack S
    Bioresour Technol; 2017 Dec; 245(Pt B):1377-1385. PubMed ID: 28552568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
    Meiswinkel TM; Gopinath V; Lindner SN; Nampoothiri KM; Wendisch VF
    Microb Biotechnol; 2013 Mar; 6(2):131-40. PubMed ID: 23164409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum.
    Wang C; Cai H; Zhou Z; Zhang K; Chen Z; Chen Y; Wan H; Ouyang P
    J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1249-58. PubMed ID: 24859809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isopropanol production using engineered Corynebacterium glutamicum from waste rice straw biomass.
    Shi X; Chang J; Kim M; Lee ME; Shin HY; Ok Han S
    Bioresour Technol; 2024 Mar; 396():130416. PubMed ID: 38316230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of Corynebacterium glutamicum for Consolidated Conversion of Hemicellulosic Biomass into Xylonic Acid.
    Yim SS; Choi JW; Lee SH; Jeon EJ; Chung WJ; Jeong KJ
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28799725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.