These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25304510)

  • 41. The Tup1-Cyc8 protein complex can shift from a transcriptional co-repressor to a transcriptional co-activator.
    Conlan RS; Gounalaki N; Hatzis P; Tzamarias D
    J Biol Chem; 1999 Jan; 274(1):205-10. PubMed ID: 9867831
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8-Tup1 corepressor in yeast.
    Lee M; Chatterjee S; Struhl K
    Genetics; 2000 Aug; 155(4):1535-42. PubMed ID: 10924455
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conservation of histone binding and transcriptional repressor functions in a Schizosaccharomyces pombe Tup1p homolog.
    Mukai Y; Matsuo E; Roth SY; Harashima S
    Mol Cell Biol; 1999 Dec; 19(12):8461-8. PubMed ID: 10567571
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Tup1-Ssn6 general repressor is involved in repression of IME1 encoding a transcriptional activator of meiosis in Saccharomyces cerevisiae.
    Mizuno T; Nakazawa N; Remgsamrarn P; Kunoh T; Oshima Y; Harashima S
    Curr Genet; 1998 Apr; 33(4):239-47. PubMed ID: 9560430
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GTS1 induction causes derepression of Tup1-Cyc8-repressing genes and chromatin remodeling through the interaction of Gts1p with Cyc8p.
    Sanada M; Kuroda K; Ueda M
    Biosci Biotechnol Biochem; 2011; 75(4):740-7. PubMed ID: 21512249
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains.
    Lin X; Yu AQ; Zhang CY; Pi L; Bai XW; Xiao DG
    Microb Cell Fact; 2017 Nov; 16(1):194. PubMed ID: 29121937
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism.
    Zhang Z; Reese JC
    Mol Cell Biol; 2005 Sep; 25(17):7399-411. PubMed ID: 16107689
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8-Tup1 corepressor.
    Chen K; Wilson MA; Hirsch C; Watson A; Liang S; Lu Y; Li W; Dent SY
    Genome Res; 2013 Feb; 23(2):312-22. PubMed ID: 23124522
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gene regulation by the yeast Ssn6-Tup1 corepressor.
    Wahi M; Komachi K; Johnson AD
    Cold Spring Harb Symp Quant Biol; 1998; 63():447-57. PubMed ID: 10384309
    [No Abstract]   [Full Text] [Related]  

  • 50. Tup1 is critical for transcriptional repression in Quiescence in S. cerevisiae.
    Bailey TB; Whitty PA; Selker EU; McKnight JN; McKnight LE
    PLoS Genet; 2022 Dec; 18(12):e1010559. PubMed ID: 36542663
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ssn6, an important factor of morphological conversion and virulence in Candida albicans.
    Hwang CS; Oh JH; Huh WK; Yim HS; Kang SO
    Mol Microbiol; 2003 Feb; 47(4):1029-43. PubMed ID: 12581357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor.
    Papamichos-Chronakis M; Gligoris T; Tzamarias D
    EMBO Rep; 2004 Apr; 5(4):368-72. PubMed ID: 15031717
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Corepressor-directed preacetylation of histone H3 in promoter chromatin primes rapid transcriptional switching of cell-type-specific genes in yeast.
    Desimone AM; Laney JD
    Mol Cell Biol; 2010 Jul; 30(13):3342-56. PubMed ID: 20439496
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nrg1 and nrg2 transcriptional repressors are differently regulated in response to carbon source.
    Berkey CD; Vyas VK; Carlson M
    Eukaryot Cell; 2004 Apr; 3(2):311-7. PubMed ID: 15075261
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tup1 Paralog
    Bui LN; Iosue CL; Wykoff DD
    mSphere; 2022 Apr; 7(2):e0076521. PubMed ID: 35341317
    [No Abstract]   [Full Text] [Related]  

  • 56. Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol.
    Takagi T; Sasaki Y; Motone K; Shibata T; Tanaka R; Miyake H; Mori T; Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6627-6636. PubMed ID: 28741083
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Tup1 corepressor directs Htz1 deposition at a specific promoter nucleosome marking the GAL1 gene for rapid activation.
    Gligoris T; Thireos G; Tzamarias D
    Mol Cell Biol; 2007 Jun; 27(11):4198-205. PubMed ID: 17387147
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The short-lived Matalpha2 transcriptional repressor is protected from degradation in vivo by interactions with its corepressors Tup1 and Ssn6.
    Laney JD; Mobley EF; Hochstrasser M
    Mol Cell Biol; 2006 Jan; 26(1):371-80. PubMed ID: 16354707
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A screen in Saccharomyces cerevisiae identified CaMCM1, an essential gene in Candida albicans crucial for morphogenesis.
    Rottmann M; Dieter S; Brunner H; Rupp S
    Mol Microbiol; 2003 Feb; 47(4):943-59. PubMed ID: 12581351
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Set2 methyltransferase associates with Ssn6 yet Tup1-Ssn6 repression is independent of histone methylation.
    Tripic T; Edmondson DG; Davie JK; Strahl BD; Dent SY
    Biochem Biophys Res Commun; 2006 Jan; 339(3):905-14. PubMed ID: 16329992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.