BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 25304917)

  • 1. A new method to customize protein expression vectors for fast, efficient and background free parallel cloning.
    Scholz J; Besir H; Strasser C; Suppmann S
    BMC Biotechnol; 2013 Feb; 13():12. PubMed ID: 23410102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid conversion of replicating and integrating Saccharomyces cerevisiae plasmid vectors via Cre recombinase.
    Nickerson DP; Quinn MA; Milnes JM
    G3 (Bethesda); 2021 Dec; 11(12):. PubMed ID: 34599813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [DNA assembly by multi-fragment digestion/ligation and homologous recombination].
    Rao X; Chong J; He C; Bi Y; Tang G; Lü Y; Gong D; Yang X
    Sheng Wu Gong Cheng Xue Bao; 2024 May; 40(5):1559-1570. PubMed ID: 38783816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining the minimal length of sequence homology required for selective gene isolation by TAR cloning.
    Noskov VN; Koriabine M; Solomon G; Randolph M; Barrett JC; Leem SH; Stubbs L; Kouprina N; Larionov V
    Nucleic Acids Res; 2001 Mar; 29(6):E32. PubMed ID: 11239009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimum conditions for selective isolation of genes from complex genomes by transformation-associated recombination cloning.
    Leem SH; Noskov VN; Park JE; Kim SI; Larionov V; Kouprina N
    Nucleic Acids Res; 2003 Mar; 31(6):e29. PubMed ID: 12626728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination: functional analysis of multi-segment expression clones.
    Cheo DL; Titus SA; Byrd DR; Hartley JL; Temple GF; Brasch MA
    Genome Res; 2004 Oct; 14(10B):2111-20. PubMed ID: 15489333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.
    Niarchos A; Siora A; Konstantinou E; Kalampoki V; Lagoumintzis G; Poulas K
    PLoS One; 2017; 12(11):e0186568. PubMed ID: 29091919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Expression Profiling via Multigene Concatemers.
    Jin K; Zheng X; Xia Y
    PLoS One; 2011 Jan; 6(1):e15711. PubMed ID: 21267445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of an AI-2 quorum sensing induced heterologous protein expression system in
    Shang F; Wang H; Zhang D; Wang W; Yu J; Xue T
    PeerJ; 2021; 9():e12497. PubMed ID: 34820206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and Functional Trends in Dehydrating Bimodules from trans-Acyltransferase Polyketide Synthases.
    Wagner DT; Zeng J; Bailey CB; Gay DC; Yuan F; Manion HR; Keatinge-Clay AT
    Structure; 2017 Jul; 25(7):1045-1055.e2. PubMed ID: 28625788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A restriction-free method for gene reconstitution using two single-primer PCRs in parallel to generate compatible cohesive ends.
    Zeng F; Hao Z; Li P; Meng Y; Dong J; Lin Y
    BMC Biotechnol; 2017 Mar; 17(1):32. PubMed ID: 28302113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methyltransferases excised from trans-AT polyketide synthases operate on N-acetylcysteamine-bound substrates.
    Stevens DC; Wagner DT; Manion HR; Alexander BK; Keatinge-Clay AT
    J Antibiot (Tokyo); 2016 Jul; 69(7):567-570. PubMed ID: 27301661
    [No Abstract]   [Full Text] [Related]  

  • 13. The LINKS motif zippers trans-acyltransferase polyketide synthase assembly lines into a biosynthetic megacomplex.
    Gay DC; Wagner DT; Meinke JL; Zogzas CE; Gay GR; Keatinge-Clay AT
    J Struct Biol; 2016 Mar; 193(3):196-205. PubMed ID: 26724270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A double-hotdog with a new trick: structure and mechanism of the trans-acyltransferase polyketide synthase enoyl-isomerase.
    Gay DC; Spear PJ; Keatinge-Clay AT
    ACS Chem Biol; 2014 Oct; 9(10):2374-81. PubMed ID: 25089587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid modification of the pET-28 expression vector for ligation independent cloning using homologous recombination in Saccharomyces cerevisiae.
    Gay G; Wagner DT; Keatinge-Clay AT; Gay DC
    Plasmid; 2014 Nov; 76():66-71. PubMed ID: 25304917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restriction-ligation-free (RLF) cloning: a high-throughput cloning method by in vivo homologous recombination of PCR products.
    Wang Y; Liu Y; Chen J; Tang MJ; Zhang SL; Wei LN; Li CH; Wei DB
    Genet Mol Res; 2015 Oct; 14(4):12306-15. PubMed ID: 26505379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A universal cloning method based on yeast homologous recombination that is simple, efficient, and versatile.
    Joska TM; Mashruwala A; Boyd JM; Belden WJ
    J Microbiol Methods; 2014 May; 100():46-51. PubMed ID: 24418681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput DNA Assembly Using Yeast Homologous Recombination.
    Ip K; Yadin R; George KW
    Methods Mol Biol; 2020; 2205():79-89. PubMed ID: 32809194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation-associated recombination (TAR) cloning and its applications for gene function; genome architecture and evolution; biotechnology and biomedicine.
    Kouprina N; Larionov V
    Oncotarget; 2023 Dec; 14():1009-1033. PubMed ID: 38147065
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.