These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25305217)

  • 1. Using gaseous emissions of a proton accelerator facility as tracer for small-scale atmospheric dispersion.
    Butterweck G; Heese I; Hugi R; Züllig J; Hödlmoser H; Hohmann E; Mayer S
    Radiat Prot Dosimetry; 2015 Apr; 164(1-2):108-11. PubMed ID: 25305217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
    Basit A; Espinosa F; Avila R; Raza S; Irfan N
    J Radiol Prot; 2008 Dec; 28(4):539-61. PubMed ID: 19029589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of radioactive gaseous releases to air from target halls at a high-energy proton accelerator.
    Butala SW; Baker SI; Yurista PM
    Health Phys; 1989 Dec; 57(6):909-16. PubMed ID: 2555316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion of positron emitting radioactive gases in a complex urban building array: a comparison of dose modelling approaches.
    Gallacher DJ; Robins AG; Burt A; Chadwick S; Hayden P; Williams M
    J Radiol Prot; 2016 Dec; 36(4):746-784. PubMed ID: 27655037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of 85Kr dispersion from the spent nuclear fuel reprocessing plant in Rokkasho, Japan, using an atmospheric dispersion model.
    Abe K; Iyogi T; Kawabata H; Chiang JH; Suwa H; Hisamatsu S
    Radiat Prot Dosimetry; 2015 Nov; 167(1-3):331-5. PubMed ID: 25948824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of the atmospheric dispersion of a high release of krypton-85 above a complex coastal terrain, comparison with the predictions of Gaussian models (Briggs, Doury, ADMS4).
    Leroy C; Maro D; Hébert D; Solier L; Rozet M; Le Cavelier S; Connan O
    J Environ Radioact; 2010 Nov; 101(11):937-44. PubMed ID: 20638159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion of radionuclides released into a stable planetary boundary layer using a Monte Carlo model.
    Basit A; Shoaib Raza S; Irfan N
    J Radiol Prot; 2006 Dec; 26(4):375-87. PubMed ID: 17146122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of source detective system of the radionuclides measured in the atmosphere using a field tracer experiment.
    Suh KS; Park K; Min BI; Kim S; Han MH
    Environ Pollut; 2019 May; 248():10-17. PubMed ID: 30771744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic dose assessment by Large Eddy Simulation of the near-range atmospheric dispersion.
    Vervecken L; Camps J; Meyers J
    J Radiol Prot; 2015 Mar; 35(1):165-78. PubMed ID: 25634888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of Cloudshine Gamma Dose Calculations in the CAP-88 Dispersion Model.
    McNaughton MW; Gillis JM; Ruedig E; Whicker JJ; Fuehne DP
    Health Phys; 2017 Apr; 112(4):414-419. PubMed ID: 28234703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic risk assessment for long-range atmospheric transport of radionuclides.
    Lauritzen B; Baklanov A; Mahura A; Mikkelsen T; Sørensen JH
    J Environ Radioact; 2007; 96(1-3):110-5. PubMed ID: 17482728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scavenging of radioactive soluble gases from inhomogeneous atmosphere by evaporating rain droplets.
    Elperin T; Fominykh A; Krasovitov B
    J Environ Radioact; 2015 May; 143():29-39. PubMed ID: 25723733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emission rate estimation through data assimilation of gamma dose measurements in a Lagrangian atmospheric dispersion model.
    Tsiouri V; Kovalets I; Andronopoulos S; Bartzis JG
    Radiat Prot Dosimetry; 2012 Jan; 148(1):34-44. PubMed ID: 21349880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coagulation effect on the activity size distributions of long lived radon progeny aerosols and its application to atmospheric residence time estimation techniques.
    Anand S; Mayya YS
    J Environ Radioact; 2015 Mar; 141():153-63. PubMed ID: 25613359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radon-based atmospheric stability classification in contrasting sub-Alpine and sub-Mediterranean environments.
    Kikaj D; Chambers SD; Vaupotič J
    J Environ Radioact; 2019 Jul; 203():125-134. PubMed ID: 30901740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skyshine radiation resulting from 6 MV and 10 MV photon beams from a medical accelerator.
    Elder DH; Harmon JF; Borak TB
    Health Phys; 2010 Jul; 99(1):17-25. PubMed ID: 20539121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solutions to the Gaussian cloud approximation for gamma absorbed dose.
    Overcamp TJ
    Health Phys; 2007 Jan; 92(1):78-81. PubMed ID: 17164603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radon entry rate analyses using in situ tracer gas method application.
    Froňka A; Jílek K
    Radiat Prot Dosimetry; 2014 Jul; 160(1-3):143-8. PubMed ID: 24736298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between variations of (7)Be, (210)Pb and (212)Pb concentrations and sub-regional atmospheric transport: Simultaneous observation at distant locations.
    Abe T; Kosako T; Komura K
    J Environ Radioact; 2010 Feb; 101(2):113-21. PubMed ID: 19897287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of atmospheric stagnation, recirculation and ventilation potential at Narora Atomic Power Station NPP site.
    Kumar D; Kumar A; Kumar V; Kumar J; Ravi PM
    Environ Monit Assess; 2013 Apr; 185(4):2887-94. PubMed ID: 22821255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.