These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25305445)

  • 1. Wettability of terminally anchored polymer brush layers on a polyamide surface.
    Varin KJ; Cohen Y
    J Colloid Interface Sci; 2014 Dec; 436():286-95. PubMed ID: 25305445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures.
    Inoue Y; Ishihara K
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):350-7. PubMed ID: 20705439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular interaction forces generated during protein adsorption to well-defined polymer brush surfaces.
    Sakata S; Inoue Y; Ishihara K
    Langmuir; 2015 Mar; 31(10):3108-14. PubMed ID: 25719761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces.
    Sakata S; Inoue Y; Ishihara K
    Langmuir; 2014 Mar; 30(10):2745-51. PubMed ID: 24564418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes.
    Kobayashi M; Terayama Y; Yamaguchi H; Terada M; Murakami D; Ishihara K; Takahara A
    Langmuir; 2012 May; 28(18):7212-22. PubMed ID: 22500465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced wetting behavior at electrospun polyamide nanofiber surfaces.
    Stachewicz U; Barber AH
    Langmuir; 2011 Mar; 27(6):3024-9. PubMed ID: 21332217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching water droplet adhesion using responsive polymer brushes.
    Liu X; Ye Q; Yu B; Liang Y; Liu W; Zhou F
    Langmuir; 2010 Jul; 26(14):12377-82. PubMed ID: 20557059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of graft architectures for enhancing hydrophobic interaction of biomolecules with thermoresponsive polymer-grafted surfaces.
    Idota N; Kikuchi A; Kobayashi J; Sakai K; Okano T
    Colloids Surf B Biointerfaces; 2012 Nov; 99():95-101. PubMed ID: 22143027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled nitroxide-mediated styrene surface graft polymerization with atmospheric plasma surface activation.
    Lewis GT; Cohen Y
    Langmuir; 2008 Nov; 24(22):13102-12. PubMed ID: 18937433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surprising high hydrophobicity of polymer networks from hydrophilic components.
    Attanasio A; Bayer IS; Ruffilli R; Ayadi F; Athanassiou A
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5717-26. PubMed ID: 23713478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wetting transition on hydrophobic surfaces covered by polyelectrolyte brushes.
    Muller P; Sudre G; Théodoly O
    Langmuir; 2008 Sep; 24(17):9541-50. PubMed ID: 18652425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multitechnique study of preferential protein adsorption on hydrophobic and hydrophilic plasma-modified polymer surfaces.
    Messina GM; Satriano C; Marletta G
    Colloids Surf B Biointerfaces; 2009 Apr; 70(1):76-83. PubMed ID: 19162451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale evaluation of lubricity on well-defined polymer brush surfaces using QCM-D and AFM.
    Kitano K; Inoue Y; Matsuno R; Takai M; Ishihara K
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):350-7. PubMed ID: 19720506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of plasma processed surfaces with tuned wettability.
    Ruiz A; Valsesia A; Ceccone G; Gilliland D; Colpo P; Rossi F
    Langmuir; 2007 Dec; 23(26):12984-9. PubMed ID: 18020471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone).
    Jiang J; Zhu L; Zhu L; Zhang H; Zhu B; Xu Y
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12895-904. PubMed ID: 24313803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic repulsion from polymer brush layers exhibiting high protein repellency.
    Inoue Y; Nakanishi T; Ishihara K
    Langmuir; 2013 Aug; 29(34):10752-8. PubMed ID: 23898820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein adhesion and cell response on atmospheric pressure dielectric barrier discharge-modified polymer surfaces.
    D'Sa RA; Burke GA; Meenan BJ
    Acta Biomater; 2010 Jul; 6(7):2609-20. PubMed ID: 20096386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic surface nanostructuring by atmospheric pressure plasma-induced graft polymerization.
    Lewis GT; Nowling GR; Hicks RF; Cohen Y
    Langmuir; 2007 Oct; 23(21):10756-64. PubMed ID: 17824715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length.
    Lego B; François M; Skene WG; Giasson S
    Langmuir; 2009 May; 25(9):5313-21. PubMed ID: 19256467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein adhesion on silicon-supported hyperbranched poly(ethylene glycol) and poly(allylamine) thin films.
    Dyer MA; Ainslie KM; Pishko MV
    Langmuir; 2007 Jun; 23(13):7018-23. PubMed ID: 17506587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.