These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25305472)

  • 1. High production of plant type levan in sugar beet transformed with timothy (Phleum pratense) 6-SFT genes.
    Matsuhira H; Tamura K; Tamagake H; Sato Y; Anzai H; Yoshida M
    J Biotechnol; 2014 Dec; 192 Pt A():215-22. PubMed ID: 25305472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and functional analysis of a fructosyltransferase cDNA for synthesis of highly polymerized levans in timothy (Phleum pratense L.).
    Tamura K; Kawakami A; Sanada Y; Tase K; Komatsu T; Yoshida M
    J Exp Bot; 2009; 60(3):893-905. PubMed ID: 19269996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of transgenic Brachypodium distachyon expressing sucrose:fructan 6-fructosyltransferases from wheat and timothy grass with different enzymatic properties.
    Tamura K; Sanada Y; Tase K; Kawakami A; Yoshida M; Yamada T
    Planta; 2014 Apr; 239(4):783-92. PubMed ID: 24385092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fructan metabolism and expression of genes coding fructan metabolic enzymes during cold acclimation and overwintering in timothy (Phleum pratense).
    Tamura K; Sanada Y; Tase K; Yoshida M
    J Plant Physiol; 2014 Jul; 171(11):951-8. PubMed ID: 24913052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant maturity and nitrogen fertilization affected fructan metabolism in harvestable tissues of timothy (Phleum pratense L.).
    Ould-Ahmed M; Decau ML; Morvan-Bertrand A; Prud'homme MP; Lafrenière C; Drouin P
    J Plant Physiol; 2014 Oct; 171(16):1479-90. PubMed ID: 25105233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pp6-FEH1 encodes an enzyme for degradation of highly polymerized levan and is transcriptionally induced by defoliation in timothy (Phleum pratense L.).
    Tamura KI; Sanada Y; Tase K; Komatsu T; Yoshida M
    J Exp Bot; 2011 Jun; 62(10):3421-31. PubMed ID: 21317211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Highly Active Endo-Levanase BT1760 of a Dominant Mammalian Gut Commensal Bacteroides thetaiotaomicron Cleaves Not Only Various Bacterial Levans, but Also Levan of Timothy Grass.
    Mardo K; Visnapuu T; Vija H; Aasamets A; Viigand K; Alamäe T
    PLoS One; 2017; 12(1):e0169989. PubMed ID: 28103254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unexpected presence of fructan 6-exohydrolases (6-FEHs) in non-fructan plants: characterization, cloning, mass mapping and functional analysis of a novel "cell-wall invertase-like" specific 6-FEH from sugar beet (Beta vulgaris L.).
    Van den Ende W; De Coninck B; Clerens S; Vergauwen R; Van Laere A
    Plant J; 2003 Dec; 36(5):697-710. PubMed ID: 14617070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molasses as fermentation substrate for levan production by Halomonas sp.
    Küçükaşik F; Kazak H; Güney D; Finore I; Poli A; Yenigün O; Nicolaus B; Oner ET
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1729-40. PubMed ID: 21161209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High level fructan accumulation in a transgenic sugar beet.
    Sévenier R; Hall RD; van der Meer IM; Hakkert HJ; van Tunen AJ; Koops AJ
    Nat Biotechnol; 1998 Sep; 16(9):843-6. PubMed ID: 9743117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High levan accumulation in transgenic tobacco plants expressing the Gluconacetobacter diazotrophicus levansucrase gene.
    Banguela A; Arrieta JG; Rodríguez R; Trujillo LE; Menéndez C; Hernández L
    J Biotechnol; 2011 Jun; 154(1):93-8. PubMed ID: 21540065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fructan synthesis in transgenic tobacco and chicory plants expressing barley sucrose: fructan 6-fructosyltransferase.
    Sprenger N; Schellenbaum L; van Dun K; Boller T; Wiemken A
    FEBS Lett; 1997 Jan; 400(3):355-8. PubMed ID: 9009230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear ion trap MS(n) of enzymatically synthesized 13C-labeled fructans revealing differentiating fragmentation patterns of β (1-2) and β (1-6) fructans and providing a tool for oligosaccharide identification in complex mixtures.
    Harrison S; Xue H; Lane G; Villas-Boas S; Rasmussen S
    Anal Chem; 2012 Feb; 84(3):1540-8. PubMed ID: 22145650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TaMYB13 is a transcriptional activator of fructosyltransferase genes involved in β-2,6-linked fructan synthesis in wheat.
    Xue GP; Kooiker M; Drenth J; McIntyre CL
    Plant J; 2011 Dec; 68(5):857-70. PubMed ID: 21838777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate profiling in seeds and seedlings of transgenic triticale modified in the expression of sucrose:sucrose-1-fructosyltransferase (1-SST) and sucrose:fructan-6-fructosyltransferase (6-SFT).
    Diedhiou C; Gaudet D; Liang Y; Sun J; Lu ZX; Eudes F; Laroche A
    J Biosci Bioeng; 2012 Oct; 114(4):371-8. PubMed ID: 22698728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots.
    Liu H; Wang Q; Yu M; Zhang Y; Wu Y; Zhang H
    Plant Cell Environ; 2008 Sep; 31(9):1325-34. PubMed ID: 18518917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of tailor-made fructans in sugar beet by expression of onion fructosyltransferase genes.
    Weyens G; Ritsema T; Van Dun K; Meyer D; Lommel M; Lathouwers J; Rosquin I; Denys P; Tossens A; Nijs M; Turk S; Gerrits N; Bink S; Walraven B; Lefèbvre M; Smeekens S
    Plant Biotechnol J; 2004 Jul; 2(4):321-7. PubMed ID: 17134393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taproot promoters cause tissue specific gene expression within the storage root of sugar beet.
    Oltmanns H; Kloos DU; Briess W; Pflugmacher M; Stahl DJ; Hehl R
    Planta; 2006 Aug; 224(3):485-95. PubMed ID: 16482437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased expression of fructosyltransferase genes in asparagus roots may contribute to efficient fructan degradation during asparagus spear harvesting.
    Ueno K; Sonoda T; Yoshida M; Kawakami A; Shiomi N; Onodera S
    Plant Physiol Biochem; 2020 Nov; 156():192-200. PubMed ID: 32971365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering fructan metabolism in plants.
    Ritsema T; Smeekens SC
    J Plant Physiol; 2003 Jul; 160(7):811-20. PubMed ID: 12940548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.