BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 25306110)

  • 1. MacroH2A1.1 and PARP-1 cooperate to regulate transcription by promoting CBP-mediated H2B acetylation.
    Chen H; Ruiz PD; Novikov L; Casill AD; Park JW; Gamble MJ
    Nat Struct Mol Biol; 2014 Nov; 21(11):981-9. PubMed ID: 25306110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MacroH2A1 chromatin specification requires its docking domain and acetylation of H2B lysine 20.
    Ruiz PD; Gamble MJ
    Nat Commun; 2018 Dec; 9(1):5143. PubMed ID: 30510186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation.
    Novikov L; Park JW; Chen H; Klerman H; Jalloh AS; Gamble MJ
    Mol Cell Biol; 2011 Oct; 31(20):4244-55. PubMed ID: 21844227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation.
    Timinszky G; Till S; Hassa PO; Hothorn M; Kustatscher G; Nijmeijer B; Colombelli J; Altmeyer M; Stelzer EH; Scheffzek K; Hottiger MO; Ladurner AG
    Nat Struct Mol Biol; 2009 Sep; 16(9):923-9. PubMed ID: 19680243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PARP1 and CBP lose their footing in cancer.
    Timinszky G; Ladurner AG
    Nat Struct Mol Biol; 2014 Nov; 21(11):947-8. PubMed ID: 25372309
    [No Abstract]   [Full Text] [Related]  

  • 6. MacroH2A1 Regulation of Poly(ADP-Ribose) Synthesis and Stability Prevents Necrosis and Promotes DNA Repair.
    Ruiz PD; Hamilton GA; Park JW; Gamble MJ
    Mol Cell Biol; 2019 Dec; 40(1):. PubMed ID: 31636161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome.
    Nusinow DA; Hernández-Muñoz I; Fazzio TG; Shah GM; Kraus WL; Panning B
    J Biol Chem; 2007 Apr; 282(17):12851-9. PubMed ID: 17322296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The histone variant macroH2A1.1 is recruited to DSBs through a mechanism involving PARP1.
    Xu C; Xu Y; Gursoy-Yuzugullu O; Price BD
    FEBS Lett; 2012 Nov; 586(21):3920-5. PubMed ID: 23031826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution, structure and function of divergent macroH2A1 splice isoforms.
    Guberovic I; Farkas M; Corujo D; Buschbeck M
    Semin Cell Dev Biol; 2023 Feb; 135():43-49. PubMed ID: 35422391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing.
    Gamble MJ; Frizzell KM; Yang C; Krishnakumar R; Kraus WL
    Genes Dev; 2010 Jan; 24(1):21-32. PubMed ID: 20008927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes.
    Krishnakumar R; Gamble MJ; Frizzell KM; Berrocal JG; Kininis M; Kraus WL
    Science; 2008 Feb; 319(5864):819-21. PubMed ID: 18258916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway.
    Krishnakumar R; Kraus WL
    Mol Cell; 2010 Sep; 39(5):736-49. PubMed ID: 20832725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The histone variant MacroH2A1 regulates target gene expression in part by recruiting the transcriptional coregulator PELP1.
    Hussey KM; Chen H; Yang C; Park E; Hah N; Erdjument-Bromage H; Tempst P; Gamble MJ; Kraus WL
    Mol Cell Biol; 2014 Jul; 34(13):2437-49. PubMed ID: 24752897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription.
    Hassa PO; Haenni SS; Buerki C; Meier NI; Lane WS; Owen H; Gersbach M; Imhof R; Hottiger MO
    J Biol Chem; 2005 Dec; 280(49):40450-64. PubMed ID: 16204234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PARP-1 Interaction with and Activation by Histones and Nucleosomes.
    Thomas C; Kotova E; Tulin AV
    Methods Mol Biol; 2017; 1608():255-267. PubMed ID: 28695515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of chromatin structure and chromatin-dependent transcription by poly(ADP-ribose) polymerase-1: possible targets for drug-based therapies.
    Wacker DA; Frizzell KM; Zhang T; Kraus WL
    Subcell Biochem; 2007; 41():45-69. PubMed ID: 17484123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Transcriptome Analysis Reveals That Poly(ADP-Ribose) Polymerase 1 Regulates Gene Expression through EZH2.
    Martin KA; Cesaroni M; Denny MF; Lupey LN; Tempera I
    Mol Cell Biol; 2015 Dec; 35(23):3934-44. PubMed ID: 26370511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ADP-Ribosyl)ation Affects Histone Acetylation and Transcription.
    Verdone L; La Fortezza M; Ciccarone F; Caiafa P; Zampieri M; Caserta M
    PLoS One; 2015; 10(12):e0144287. PubMed ID: 26636673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells.
    Frizzell KM; Gamble MJ; Berrocal JG; Zhang T; Krishnakumar R; Cen Y; Sauve AA; Kraus WL
    J Biol Chem; 2009 Dec; 284(49):33926-38. PubMed ID: 19812418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(ADP-ribose) polymerase-1-induced NAD(+) depletion promotes nuclear factor-κB transcriptional activity by preventing p65 de-acetylation.
    Kauppinen TM; Gan L; Swanson RA
    Biochim Biophys Acta; 2013 Aug; 1833(8):1985-91. PubMed ID: 23597856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.