These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25307446)

  • 1. An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces.
    Vilimek M
    Acta Bioeng Biomech; 2014; 16(3):119-27. PubMed ID: 25307446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Musculotendon forces derived by different muscle models.
    Vilimek M
    Acta Bioeng Biomech; 2007; 9(2):41-7. PubMed ID: 18421942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical genetic algorithm versus static optimization-investigation of elbow flexion and extension movements.
    Raikova RT; Aladjov HTs
    J Biomech; 2002 Aug; 35(8):1123-35. PubMed ID: 12126671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The simplification of the muscle force prediction using sensitivity analyses.
    Vejpustková J; Vilímek M; Sochor M
    Technol Health Care; 2006; 14(4-5):215-8. PubMed ID: 17065744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual muscle force parameters and fiber operating ranges for elbow flexion-extension and forearm pronation-supination.
    Hale R; Dorman D; Gonzalez RV
    J Biomech; 2011 Feb; 44(4):650-6. PubMed ID: 21145061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of the flexion-extension motion in the elbow joint some problems concerning muscle forces modelling and computation.
    Raikova R
    J Biomech; 1996 Jun; 29(6):763-72. PubMed ID: 9147973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search.
    Mobasser F; Eklund JM; Hashtrudi-Zaad K
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface EMG force modeling with joint angle based calibration.
    Hashemi J; Morin E; Mousavi P; Hashtrudi-Zaad K
    J Electromyogr Kinesiol; 2013 Apr; 23(2):416-24. PubMed ID: 23273763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Elbow Flexion Force Estimation Through a Muscle Twitch Model and sEMG in a Fatigue Condition.
    Na Y; Kim J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1431-1439. PubMed ID: 28113944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of using an artificial neural network model to estimate the elbow flexion force from mechanomyography.
    Youn W; Kim J
    J Neurosci Methods; 2011 Jan; 194(2):386-93. PubMed ID: 21087633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of the external forces and moments at the shoulder and elbow while performing every day tasks.
    Murray IA; Johnson GR
    Clin Biomech (Bristol, Avon); 2004 Jul; 19(6):586-94. PubMed ID: 15234482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of muscles' behaviour. Part II. The computational model of muscles' group acting on the elbow joint.
    Wojnicz W; Wittbrodt E
    Acta Bioeng Biomech; 2010; 12(1):3-10. PubMed ID: 20653318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of joint moments using a neural network model of muscle activations from EMG signals.
    Wang L; Buchanan TS
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):30-7. PubMed ID: 12173737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface myoelectric signal classification for prostheses control.
    Al-Assaf Y; Al-Nashash H
    J Med Eng Technol; 2005; 29(5):203-7. PubMed ID: 16126579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis.
    Karlik B; Tokhi MO; Alci M
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1255-61. PubMed ID: 14619995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Estimation of Human Multi-Joint Angles From sEMG Using a State-Space Model.
    Ding Q; Han J; Zhao X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1518-1528. PubMed ID: 28113324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid static optimisation method to estimate muscle forces during muscle co-activation.
    Son J; Hwang S; Kim Y
    Comput Methods Biomech Biomed Engin; 2012; 15(3):249-54. PubMed ID: 21302162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromusculoskeletal model self-calibration for on-line sequential bayesian moment estimation.
    Bueno DR; Montano L
    J Neural Eng; 2017 Apr; 14(2):026011. PubMed ID: 28079030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.