These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
697 related articles for article (PubMed ID: 25307474)
1. Biotransformation of catechin and extraction of active polysaccharide from green tea leaves via simultaneous treatment with tannase and pectinase. Baik JH; Shin KS; Park Y; Yu KW; Suh HJ; Choi HS J Sci Food Agric; 2015 Aug; 95(11):2337-44. PubMed ID: 25307474 [TBL] [Abstract][Full Text] [Related]
2. Differential activities of fungi-derived tannases on biotransformation and substrate inhibition in green tea extract. Baik JH; Suh HJ; Cho SY; Park Y; Choi HS J Biosci Bioeng; 2014 Nov; 118(5):546-53. PubMed ID: 24856576 [TBL] [Abstract][Full Text] [Related]
3. Bio-transformation of green tea infusion with tannase and its improvement on adipocyte metabolism. Kim HS; Jeon DY; Javaid HMA; Sahar NE; Lee HN; Hong SJ; Huh JY; Kim YM Enzyme Microb Technol; 2020 Apr; 135():109496. PubMed ID: 32146939 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic improvement in the polyphenol extractability and antioxidant activity of green tea extracts. Hong YH; Jung EY; Park Y; Shin KS; Kim TY; Yu KW; Chang UJ; Suh HJ Biosci Biotechnol Biochem; 2013; 77(1):22-9. PubMed ID: 23291774 [TBL] [Abstract][Full Text] [Related]
5. Impact of Bioconversion of Gallated Catechins and Flavonol Glycosides on Bioaccessibility and Intestinal Cellular Uptake of Catechins. Choi EH; Rha CS; Balusamy SR; Kim DO; Shim SM J Agric Food Chem; 2019 Feb; 67(8):2331-2339. PubMed ID: 30767525 [TBL] [Abstract][Full Text] [Related]
6. Green tea catechins prevent low-density lipoprotein oxidation via their accumulation in low-density lipoprotein particles in humans. Suzuki-Sugihara N; Kishimoto Y; Saita E; Taguchi C; Kobayashi M; Ichitani M; Ukawa Y; Sagesaka YM; Suzuki E; Kondo K Nutr Res; 2016 Jan; 36(1):16-23. PubMed ID: 26773777 [TBL] [Abstract][Full Text] [Related]
7. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. Lin YS; Tsai YJ; Tsay JS; Lin JK J Agric Food Chem; 2003 Mar; 51(7):1864-73. PubMed ID: 12643643 [TBL] [Abstract][Full Text] [Related]
8. Immunostimulating activity of a crude polysaccharide derived from green tea (Camellia sinensis) extract. Monobe M; Ema K; Kato F; Maeda-Yamamoto M J Agric Food Chem; 2008 Feb; 56(4):1423-7. PubMed ID: 18232634 [TBL] [Abstract][Full Text] [Related]
9. Chemopreventive potential of the tannase-mediated biotransformation of green tea. Macedo JA; Ferreira LR; Camara LE; Santos JC; Gambero A; Macedo GA; Ribeiro ML Food Chem; 2012 Jul; 133(2):358-65. PubMed ID: 25683407 [TBL] [Abstract][Full Text] [Related]
10. High Performance Liquid Chromatography and Metabolomics Analysis of Tannase Metabolism of Gallic Acid and Gallates in Tea Leaves. Liu M; Xie H; Ma Y; Li H; Li C; Chen L; Jiang B; Nian B; Guo T; Zhang Z; Jiao W; Liu Q; Ling T; Zhao M J Agric Food Chem; 2020 Apr; 68(17):4946-4954. PubMed ID: 32275834 [TBL] [Abstract][Full Text] [Related]
11. Preparation and antioxidant activity of green tea extract enriched in epigallocatechin (EGC) and epigallocatechin gallate (EGCG). Hu J; Zhou D; Chen Y J Agric Food Chem; 2009 Feb; 57(4):1349-53. PubMed ID: 19182914 [TBL] [Abstract][Full Text] [Related]
12. Improving the sweet aftertaste of green tea infusion with tannase. Zhang YN; Yin JF; Chen JX; Wang F; Du QZ; Jiang YW; Xu YQ Food Chem; 2016 Feb; 192():470-6. PubMed ID: 26304374 [TBL] [Abstract][Full Text] [Related]
13. White and green teas (Camellia sinensis var. sinensis): variation in phenolic, methylxanthine, and antioxidant profiles. Unachukwu UJ; Ahmed S; Kavalier A; Lyles JT; Kennelly EJ J Food Sci; 2010 Aug; 75(6):C541-8. PubMed ID: 20722909 [TBL] [Abstract][Full Text] [Related]
14. Role of catechins in the antioxidant capacity of an active film containing green tea, green coffee, and grapefruit extracts. Colon M; Nerin C J Agric Food Chem; 2012 Oct; 60(39):9842-9. PubMed ID: 22973940 [TBL] [Abstract][Full Text] [Related]
15. PCL assay application in superoxide anion-radical scavenging capacity of tea Camellia sinensis extracts. Gramza-Michałowska A; Sidor A; Reguła J; Kulczyński B Acta Sci Pol Technol Aliment; 2015; 14(4):331-341. PubMed ID: 28068039 [TBL] [Abstract][Full Text] [Related]
16. Chemical compositions and bioactivities of crude polysaccharides from tea leaves beyond their useful date. Xiao J; Huo J; Jiang H; Yang F Int J Biol Macromol; 2011 Dec; 49(5):1143-51. PubMed ID: 21946077 [TBL] [Abstract][Full Text] [Related]
17. CATECHINS PROFILE, CAFFEINE CONTENT AND ANTIOXIDANT ACTIVITY OF CAMELLIA SINENSIS TEAS COMMERCIALIZED IN ROMANIA. Luca VS; Stan AM; Trifan A; Miron A; Aprotosoaie AC Rev Med Chir Soc Med Nat Iasi; 2016; 120(2):457-63. PubMed ID: 27483735 [TBL] [Abstract][Full Text] [Related]
18. Stability of tea catechins in the breadmaking process. Wang R; Zhou W J Agric Food Chem; 2004 Dec; 52(26):8224-9. PubMed ID: 15612821 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous preparation of naturally abundant and rare catechins by tannase-mediated biotransformation combining high speed counter current chromatography. Xia G; Hong S; Liu S Food Chem; 2014 May; 151():380-4. PubMed ID: 24423547 [TBL] [Abstract][Full Text] [Related]
20. Comparison of in vitro antioxidant activities and bioactive components of green tea extracts by different extraction methods. Jun X; Deji S; Ye L; Rui Z Int J Pharm; 2011 Apr; 408(1-2):97-101. PubMed ID: 21310224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]