These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25308060)

  • 1. Graphene nanomesh: new versatile materials.
    Yang J; Ma M; Li L; Zhang Y; Huang W; Dong X
    Nanoscale; 2014 Nov; 6(22):13301-13. PubMed ID: 25308060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Fabrication of Large-Area, Uniform Graphene Nanomeshes for High-Speed, Room-Temperature Direct Terahertz Detection.
    Yuan W; Li M; Wen Z; Sun Y; Ruan D; Zhang Z; Chen G; Gao Y
    Nanoscale Res Lett; 2018 Jul; 13(1):190. PubMed ID: 29971642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of graphene nanomesh with symmetrical fractal patterns via hydrogen-free chemical vapor deposition.
    Li F; Li Y; Zhao Y; Liu M; Kan E; Li Q; Wan Y
    Nanotechnology; 2022 Nov; 34(4):. PubMed ID: 36301681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene nanomesh as highly sensitive chemiresistor gas sensor.
    Paul RK; Badhulika S; Saucedo NM; Mulchandani A
    Anal Chem; 2012 Oct; 84(19):8171-8. PubMed ID: 22931286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of magnetic field on electronic transport in a bilayer graphene nanomesh.
    Liu Y; Liu X; Zhang Y; Xia Q; He J
    Nanotechnology; 2017 Jun; 28(23):235303. PubMed ID: 28516895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures.
    Fan Q; Gottfried JM; Zhu J
    Acc Chem Res; 2015 Aug; 48(8):2484-94. PubMed ID: 26194462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a graphene nanomesh using a platinum nano-network as a pattern mask.
    Jung I; Jang HY; Moon J; Park S
    Nanoscale; 2014 Jun; 6(12):6482-6. PubMed ID: 24837501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures.
    Jiang L; Fan Z
    Nanoscale; 2014 Feb; 6(4):1922-45. PubMed ID: 24301688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structurally Controlled Large-Area 10 nm Pitch Graphene Nanomesh by Focused Helium Ion Beam Milling.
    Schmidt ME; Iwasaki T; Muruganathan M; Haque M; Van Ngoc H; Ogawa S; Mizuta H
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10362-10368. PubMed ID: 29485851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect.
    Nguyen VH; Mazzamuto F; Saint-Martin J; Bournel A; Dollfus P
    Nanotechnology; 2012 Feb; 23(6):065201. PubMed ID: 22249029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of the electrical characteristics of graphene field-effect transistors with fluoropolymer.
    Ha TJ; Lee J; Chowdhury SF; Akinwande D; Rossky PJ; Dodabalapur A
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):16-20. PubMed ID: 23252452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Area Semiconducting Graphene Nanomesh Tailored by Interferometric Lithography.
    Kazemi A; He X; Alaie S; Ghasemi J; Dawson NM; Cavallo F; Habteyes TG; Brueck SR; Krishna S
    Sci Rep; 2015 Jul; 5():11463. PubMed ID: 26126936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologically templated assembly of hybrid semiconducting nanomesh for high performance field effect transistors and sensors.
    Byeon HH; Lee SW; Lee EH; Kim W; Yi H
    Sci Rep; 2016 Oct; 6():35591. PubMed ID: 27762315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene nanomesh.
    Bai J; Zhong X; Jiang S; Huang Y; Duan X
    Nat Nanotechnol; 2010 Mar; 5(3):190-4. PubMed ID: 20154685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene field-effect transistor and its application for electronic sensing.
    Zhan B; Li C; Yang J; Jenkins G; Huang W; Dong X
    Small; 2014 Oct; 10(20):4042-65. PubMed ID: 25044546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-based photonic devices for soft hybrid optoelectronic systems.
    Kim JT; Kim J; Choi H; Choi CG; Choi SY
    Nanotechnology; 2012 Aug; 23(34):344005. PubMed ID: 22885955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography.
    Wang M; Fu L; Gan L; Zhang C; Rümmeli M; Bachmatiuk A; Huang K; Fang Y; Liu Z
    Sci Rep; 2013; 3():1238. PubMed ID: 23393620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.