These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25308379)

  • 1. Leg stiffness adjustment during hopping at different intensities and frequencies.
    Mrdakovic V; Ilic D; Vulovic R; Matic M; Jankovic N; Filipovic N
    Acta Bioeng Biomech; 2014; 16(3):69-76. PubMed ID: 25308379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leg stiffness adjustment for a range of hopping frequencies in humans.
    Hobara H; Inoue K; Muraoka T; Omuro K; Sakamoto M; Kanosue K
    J Biomech; 2010 Feb; 43(3):506-11. PubMed ID: 19879582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leg and joint stiffness in human hopping.
    Kuitunen S; Ogiso K; Komi PV
    Scand J Med Sci Sports; 2011 Dec; 21(6):e159-67. PubMed ID: 22126723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running.
    Joseph CW; Bradshaw EJ; Kemp J; Clark RA
    J Appl Biomech; 2013 Aug; 29(4):386-94. PubMed ID: 22923423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leg stiffness primarily depends on ankle stiffness during human hopping.
    Farley CT; Morgenroth DC
    J Biomech; 1999 Mar; 32(3):267-73. PubMed ID: 10093026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knee stiffness is a major determinant of leg stiffness during maximal hopping.
    Hobara H; Muraoka T; Omuro K; Gomi K; Sakamoto M; Inoue K; Kanosue K
    J Biomech; 2009 Aug; 42(11):1768-71. PubMed ID: 19486983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinant of leg stiffness during hopping is frequency-dependent.
    Hobara H; Inoue K; Omuro K; Muraoka T; Kanosue K
    Eur J Appl Physiol; 2011 Sep; 111(9):2195-201. PubMed ID: 21318314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of computation methods for leg stiffness during hopping.
    Hobara H; Inoue K; Kobayashi Y; Ogata T
    J Appl Biomech; 2014 Feb; 30(1):154-9. PubMed ID: 24676522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive dynamics change leg mechanics for an unexpected surface during human hopping.
    Moritz CT; Farley CT
    J Appl Physiol (1985); 2004 Oct; 97(4):1313-22. PubMed ID: 15169748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hopping frequency on bilateral differences in leg stiffness.
    Hobara H; Inoue K; Kanosue K
    J Appl Biomech; 2013 Feb; 29(1):55-60. PubMed ID: 23462443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses.
    Farley CT; Houdijk HH; Van Strien C; Louie M
    J Appl Physiol (1985); 1998 Sep; 85(3):1044-55. PubMed ID: 9729582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance.
    Allen SP; Grabowski AM
    J Appl Physiol (1985); 2019 Aug; 127(2):520-530. PubMed ID: 31219770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constant and variable stiffness and damping of the leg joints in human hopping.
    Rapoport S; Mizrahi J; Kimmel E; Verbitsky O; Isakov E
    J Biomech Eng; 2003 Aug; 125(4):507-14. PubMed ID: 12968575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks.
    Granata KP; Padua DA; Wilson SE
    J Electromyogr Kinesiol; 2002 Apr; 12(2):127-35. PubMed ID: 11955985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromechanical adaptation to hopping with an elastic ankle-foot orthosis.
    Ferris DP; Bohra ZA; Lukos JR; Kinnaird CR
    J Appl Physiol (1985); 2006 Jan; 100(1):163-70. PubMed ID: 16179395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in lower extremity stiffness between endurance-trained athletes and untrained subjects.
    Hobara H; Kimura K; Omuro K; Gomi K; Muraoka T; Sakamoto M; Kanosue K
    J Sci Med Sport; 2010 Jan; 13(1):106-11. PubMed ID: 18951842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in spring-mass characteristics between one- and two-legged hopping.
    Hobara H; Kobayashi Y; Kato E; Ogata T
    J Appl Biomech; 2013 Dec; 29(6):785-9. PubMed ID: 23271206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular changes for hopping on a range of damped surfaces.
    Moritz CT; Greene SM; Farley CT
    J Appl Physiol (1985); 2004 May; 96(5):1996-2004. PubMed ID: 14688034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking the mechanics and energetics of hopping with elastic ankle exoskeletons.
    Farris DJ; Sawicki GS
    J Appl Physiol (1985); 2012 Dec; 113(12):1862-72. PubMed ID: 23065760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint moment and mechanical power flow of the lower limb during vertical jump.
    Fukashiro S; Komi PV
    Int J Sports Med; 1987 Mar; 8 Suppl 1():15-21. PubMed ID: 3689489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.