These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 25308384)
1. Nonparametric estimates of drift and diffusion profiles via Fokker-Planck algebra. Lund SP; Hubbard JB; Halter M J Phys Chem B; 2014 Nov; 118(44):12743-9. PubMed ID: 25308384 [TBL] [Abstract][Full Text] [Related]
2. Solution of Fokker-Planck equation for a broad class of drift and diffusion coefficients. Fa KS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):012102. PubMed ID: 21867236 [TBL] [Abstract][Full Text] [Related]
3. Empirical Fokker-Planck-based test of stationarity for time series. Erkal C; Cecen AA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062907. PubMed ID: 25019851 [TBL] [Abstract][Full Text] [Related]
4. Diffusive process on a backbone structure with drift terms. Lenzi EK; da Silva LR; Tateishi AA; Lenzi MK; Ribeiro HV Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012121. PubMed ID: 23410297 [TBL] [Abstract][Full Text] [Related]
5. Brownian motion in inhomogeneous suspensions. Yang M; Ripoll M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062110. PubMed ID: 23848630 [TBL] [Abstract][Full Text] [Related]
6. Transport in time-dependent random potentials. Krivolapov Y; Fishman S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051115. PubMed ID: 23214746 [TBL] [Abstract][Full Text] [Related]
7. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy. Shizgal BD Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998 [TBL] [Abstract][Full Text] [Related]
8. Measuring interdependences in dissipative dynamical systems with estimated Fokker-Planck coefficients. Prusseit J; Lehnertz K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041914. PubMed ID: 18517663 [TBL] [Abstract][Full Text] [Related]
9. Permeation across hydrated DPPC lipid bilayers: simulation of the titrable amphiphilic drug valproic acid. Ulander J; Haymet AD Biophys J; 2003 Dec; 85(6):3475-84. PubMed ID: 14645043 [TBL] [Abstract][Full Text] [Related]
10. Memoryless control of boundary concentrations of diffusing particles. Singer A; Schuss Z; Nadler B; Eisenberg RS Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061106. PubMed ID: 15697340 [TBL] [Abstract][Full Text] [Related]
11. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Grima R; Thomas P; Straube AV J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear drift-diffusion model of gating in the fast Cl channel. Vaccaro SR Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011923. PubMed ID: 17677510 [TBL] [Abstract][Full Text] [Related]
13. Mapping the Monte Carlo scheme to Langevin dynamics: a Fokker-Planck approach. Cheng XZ; Jalil MB; Lee HK; Okabe Y Phys Rev Lett; 2006 Feb; 96(6):067208. PubMed ID: 16606044 [TBL] [Abstract][Full Text] [Related]
14. Robust unidirectional rotation in three-tooth Brownian rotary ratchet systems. Tutu H; Nagata S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022144. PubMed ID: 23496496 [TBL] [Abstract][Full Text] [Related]
15. Fokker-Planck equation with arbitrary dc and ac fields: continued fraction method. Lee CK; Gong J Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011104. PubMed ID: 21867110 [TBL] [Abstract][Full Text] [Related]
16. Invariance principle and model reduction for the Fokker-Planck equation. Karlin IV Philos Trans A Math Phys Eng Sci; 2016 Nov; 374(2080):. PubMed ID: 27698039 [TBL] [Abstract][Full Text] [Related]