BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25308783)

  • 1. Mechanism of enzymatic reaction and protein-protein interactions of PLD from a 3D structural model.
    Mahankali M; Alter G; Gomez-Cambronero J
    Cell Signal; 2015 Jan; 27(1):69-81. PubMed ID: 25308783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PLD Protein-Protein Interactions With Signaling Molecules and Modulation by PA.
    Gomez-Cambronero J; Morris AJ; Henkels KM
    Methods Enzymol; 2017; 583():327-357. PubMed ID: 28063497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF).
    Gomez-Cambronero J
    Cell Signal; 2011 Dec; 23(12):1885-95. PubMed ID: 21740967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipase D2 (PLD2) is a guanine nucleotide exchange factor (GEF) for the GTPase Rac2.
    Mahankali M; Peng HJ; Henkels KM; Dinauer MC; Gomez-Cambronero J
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19617-22. PubMed ID: 22106281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the catalytic site of phospholipase D2 (PLD2) newly described guanine nucleotide exchange factor activity.
    Mahankali M; Henkels KM; Alter G; Gomez-Cambronero J
    J Biol Chem; 2012 Nov; 287(49):41417-31. PubMed ID: 23035122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two sites of action for PLD2 inhibitors: The enzyme catalytic center and an allosteric, phosphoinositide biding pocket.
    Ganesan R; Mahankali M; Alter G; Gomez-Cambronero J
    Biochim Biophys Acta; 2015 Mar; 1851(3):261-72. PubMed ID: 25532944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipase D regulation and localisation is dependent upon a phosphatidylinositol 4,5-biphosphate-specific PH domain.
    Hodgkin MN; Masson MR; Powner D; Saqib KM; Ponting CP; Wakelam MJ
    Curr Biol; 2000 Jan; 10(1):43-6. PubMed ID: 10660303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure analysis between the SWAP-70 RHO-GEF and the newly described PLD2-GEF.
    Gomez-Cambronero J
    Small GTPases; 2012; 3(4):202-8. PubMed ID: 22858691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A GEF-to-phospholipase molecular switch caused by phosphatidic acid, Rac and JAK tyrosine kinase that explains leukocyte cell migration.
    Mahankali M; Henkels KM; Gomez-Cambronero J
    J Cell Sci; 2013 Mar; 126(Pt 6):1416-28. PubMed ID: 23378025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dual effect of Rac2 on phospholipase D2 regulation that explains both the onset and termination of chemotaxis.
    Peng HJ; Henkels KM; Mahankali M; Marchal C; Bubulya P; Dinauer MC; Gomez-Cambronero J
    Mol Cell Biol; 2011 Jun; 31(11):2227-40. PubMed ID: 21444720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipase D family member 4, a transmembrane glycoprotein with no phospholipase D activity, expression in spleen and early postnatal microglia.
    Yoshikawa F; Banno Y; Otani Y; Yamaguchi Y; Nagakura-Takagi Y; Morita N; Sato Y; Saruta C; Nishibe H; Sadakata T; Shinoda Y; Hayashi K; Mishima Y; Baba H; Furuichi T
    PLoS One; 2010 Nov; 5(11):e13932. PubMed ID: 21085684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of cell membrane ruffling relies on a phospholipase D2 (PLD2), Grb2 and Rac2 association.
    Mahankali M; Peng HJ; Cox D; Gomez-Cambronero J
    Cell Signal; 2011 Aug; 23(8):1291-8. PubMed ID: 21419846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLD2-PI(4,5)P2 interactions in fluid phase membranes: Structural modeling and molecular dynamics simulations.
    Han K; Pastor RW; Fenollar-Ferrer C
    PLoS One; 2020; 15(7):e0236201. PubMed ID: 32687545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for two CRIB domains in phospholipase D2 (PLD2) that the enzyme uses to specifically bind to the small GTPase Rac2.
    Peng HJ; Henkels KM; Mahankali M; Dinauer MC; Gomez-Cambronero J
    J Biol Chem; 2011 May; 286(18):16308-20. PubMed ID: 21378159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive model that explains the regulation of phospholipase D2 activity by phosphorylation-dephosphorylation.
    Henkels KM; Peng HJ; Frondorf K; Gomez-Cambronero J
    Mol Cell Biol; 2010 May; 30(9):2251-63. PubMed ID: 20176813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual role for phosphoinositides in regulation of yeast and mammalian phospholipase D enzymes.
    Sciorra VA; Rudge SA; Wang J; McLaughlin S; Engebrecht J; Morris AJ
    J Cell Biol; 2002 Dec; 159(6):1039-49. PubMed ID: 12486109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of PLD2 from baculovirus for studies in inflammatory responses.
    Gomez-Cambronero J; Henkels KM
    Methods Mol Biol; 2012; 861():201-25. PubMed ID: 22426721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of the type Ialpha PIPkinase with phospholipase D: a role for the local generation of phosphatidylinositol 4, 5-bisphosphate in the regulation of PLD2 activity.
    Divecha N; Roefs M; Halstead JR; D'Andrea S; Fernandez-Borga M; Oomen L; Saqib KM; Wakelam MJ; D'Santos C
    EMBO J; 2000 Oct; 19(20):5440-9. PubMed ID: 11032811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signalling roles of mammalian phospholipase D1 and D2.
    Cockcroft S
    Cell Mol Life Sci; 2001 Oct; 58(11):1674-87. PubMed ID: 11706993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of human PLD2 and the analysis of PLD isoform splice variants.
    Steed PM; Clark KL; Boyar WC; Lasala DJ
    FASEB J; 1998 Oct; 12(13):1309-17. PubMed ID: 9761774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.