BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25308943)

  • 1. Ultrasound-based measurement of molecular marker concentration in large blood vessels: a feasibility study.
    Wang S; Mauldin FW; Klibanov AL; Hossack JA
    Ultrasound Med Biol; 2015 Jan; 41(1):222-34. PubMed ID: 25308943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding dynamics of targeted microbubbles in response to modulated acoustic radiation force.
    Wang S; Hossack JA; Klibanov AL; Mauldin FW
    Phys Med Biol; 2014 Jan; 59(2):465-84. PubMed ID: 24374866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels With In Vivo Results.
    Wang S; Wang CY; Unnikrishnan S; Klibanov AL; Hossack JA; Mauldin FW
    Invest Radiol; 2015 Nov; 50(11):772-84. PubMed ID: 26135018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound Molecular Imaging of Inflammation in Mouse Abdominal Aorta.
    Wang S; Unnikrishnan S; Herbst EB; Klibanov AL; Mauldin FW; Hossack JA
    Invest Radiol; 2017 Sep; 52(9):499-506. PubMed ID: 28430714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual frequency method for simultaneous translation and real-time imaging of ultrasound contrast agents within large blood vessels.
    Patil AV; Rychak JJ; Allen JS; Klibanov AL; Hossack JA
    Ultrasound Med Biol; 2009 Dec; 35(12):2021-30. PubMed ID: 19828229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound-modulated optical tomography with intense acoustic bursts.
    Zemp RJ; Kim C; Wang LV
    Appl Opt; 2007 Apr; 46(10):1615-23. PubMed ID: 17356603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sensitive TLRH targeted imaging technique for ultrasonic molecular imaging.
    Hu X; Zheng H; Kruse DE; Sutcliffe P; Stephens DN; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):305-16. PubMed ID: 20178897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbubble Void Imaging: A Non-invasive Technique for Flow Visualisation and Quantification of Mixing in Large Vessels Using Plane Wave Ultrasound and Controlled Microbubble Contrast Agent Destruction.
    Leow CH; Iori F; Corbett R; Duncan N; Caro C; Vincent P; Tang MX
    Ultrasound Med Biol; 2015 Nov; 41(11):2926-37. PubMed ID: 26297515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of temperature, needle gauge and injection rate on the size distribution, concentration and acoustic responses of ultrasound contrast agents at high frequency.
    Sun C; Panagakou I; Sboros V; Butler MB; Kenwright D; Thomson AJ; Moran CM
    Ultrasonics; 2016 Aug; 70():84-91. PubMed ID: 27140502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture.
    Kolkman RG; Hondebrink E; Steenbergen W; van Leeuwen TG; de Mul FF
    J Biomed Opt; 2004; 9(6):1327-35. PubMed ID: 15568955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and characterization of a vitreous mimicking material for radiation force imaging.
    Negron LA; Viola F; Black EP; Toth CA; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1543-51. PubMed ID: 12484477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harmonic vibro-acoustography.
    Chen S; Kinnick RR; Greenleaf JF; Fatemi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jul; 54(7):1346-51. PubMed ID: 17718323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic and acoustic properties of vessel mimicking material for elasticity imaging.
    de Korte CL; Céspedes EI; van der Steen AF; Norder B; te Nijenhuis K
    Ultrason Imaging; 1997 Apr; 19(2):112-26. PubMed ID: 9381628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative sub-resolution blood velocity estimation using ultrasound localization microscopy ex-vivo and in-vivo.
    Espíndola D; DeRuiter RM; Santibanez F; Dayton PA; Pinton G
    Biomed Phys Eng Express; 2020 Apr; 6(3):035019. PubMed ID: 33438664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro acoustic characterization of three phospholipid ultrasound contrast agents from 12 to 43 MHz.
    Sun C; Sboros V; Butler MB; Moran CM
    Ultrasound Med Biol; 2014 Mar; 40(3):541-50. PubMed ID: 24361219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Acoustic Angiography: A New Technique for High-resolution Superharmonic Ultrasound Molecular Imaging.
    Shelton SE; Lindsey BD; Tsuruta JK; Foster FS; Dayton PA
    Ultrasound Med Biol; 2016 Mar; 42(3):769-81. PubMed ID: 26678155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Validation of k-Wave: Nonlinear Wave Propagation in Layered, Absorbing Fluid Media.
    Martin E; Jaros J; Treeby BE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):81-91. PubMed ID: 31535990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional ultrasound molecular imaging of angiogenesis in colon cancer using a clinical matrix array ultrasound transducer.
    Wang H; Kaneko OF; Tian L; Hristov D; Willmann JK
    Invest Radiol; 2015 May; 50(5):322-9. PubMed ID: 25575176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the effect of strontium, lead, and aluminum in bone on dual-energy x-ray absorptiometry and quantitative ultrasound measurements: A phantom study.
    Jang DH; Da Silva E; Tavakkoli J; Slatkovska L; Cheung AM; Pejović-Milić A
    Med Phys; 2018 Jan; 45(1):81-91. PubMed ID: 29080282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Use of Acoustic Radiation Force Decorrelation-Weighted Pulse Inversion for Enhanced Ultrasound Contrast Imaging.
    Herbst EB; Unnikrishnan S; Wang S; Klibanov AL; Hossack JA; Mauldin FW
    Invest Radiol; 2017 Feb; 52(2):95-102. PubMed ID: 27495188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.