BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25309029)

  • 21. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.
    Ren Y; Liu Z; Shum HC
    Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrodynamic interactions between two equally sized spheres in viscoelastic fluids in shear flow.
    Snijkers F; Pasquino R; Vermant J
    Langmuir; 2013 May; 29(19):5701-13. PubMed ID: 23600865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical description and experimental validation of a rheology model for non-Newtonian fluid flow in cancellous bone.
    Widmer Soyka RP; López A; Persson C; Cristofolini L; Ferguson SJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():43-53. PubMed ID: 23867293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microscopic mechanism study of the rheological behavior of non-Newtonian fluids based on dissipative particle dynamics.
    Li X; Hu Z; Wang Y; Qin C; Xu Z; Chen X; Wu S; Tu Y; Wang Y
    Soft Matter; 2023 Jan; 19(2):258-267. PubMed ID: 36511950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical analysis of thermophoresis of charged colloidal particles in non-Newtonian concentrated electrolyte solutions.
    Zhou Y; Deng X; Liang S; Zhao C; Yang C
    Electrophoresis; 2022 Nov; 43(21-22):2267-2275. PubMed ID: 35589398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-Bubble Rising in Shear-Thinning and Elastoviscoplastic Fluids Using a Geometric Volume of Fluid Algorithm.
    Fakhari A; Fernandes C
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental study of the immiscible displacement of shear-thinning fluids in pore networks.
    Tsakiroglou CD; Theodoropoulou M; Karoutsos V; Papanicolaou D; Sygouni V
    J Colloid Interface Sci; 2003 Nov; 267(1):217-32. PubMed ID: 14554188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature Effect on Rheological Behavior of Silicone Oils. A Model for the Viscous Heating.
    Romano MR; Cuomo F; Massarotti N; Mauro A; Salahudeen M; Costagliola C; Ambrosone L
    J Phys Chem B; 2017 Jul; 121(29):7048-7054. PubMed ID: 28686440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A pore network modelling approach to investigate the interplay between local and Darcy viscosities during the flow of shear-thinning fluids in porous media.
    Rodríguez de Castro A; Goyeau B
    J Colloid Interface Sci; 2021 May; 590():446-457. PubMed ID: 33561594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation.
    Zhong L; Oostrom M; Truex MJ; Vermeul VR; Szecsody JE
    J Hazard Mater; 2013 Jan; 244-245():160-70. PubMed ID: 23246952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow and hydrodynamic shear stress inside a printing needle during biofabrication.
    Müller SJ; Mirzahossein E; Iftekhar EN; Bächer C; Schrüfer S; Schubert DW; Fabry B; Gekle S
    PLoS One; 2020; 15(7):e0236371. PubMed ID: 32706802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alteration in membrane-based pumping flow with rheological behaviour: A mathematical model.
    Bhandari DS; Tripathi D
    Comput Methods Programs Biomed; 2023 Feb; 229():107325. PubMed ID: 36586178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wall-mode instability in plane shear flow of viscoelastic fluid over a deformable solid.
    Chokshi P; Bhade P; Kumaran V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023007. PubMed ID: 25768597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rheological evaluation of petroleum jelly as a base material in ointment and cream formulations: steady shear flow behavior.
    Park EK; Song KW
    Arch Pharm Res; 2010 Jan; 33(1):141-50. PubMed ID: 20191355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid-Liquid Flows with Non-Newtonian Dispersed Phase in a T-Junction Microchannel.
    Yagodnitsyna A; Kovalev A; Bilsky A
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33809906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational and Experimental Investigation of Biofilm Disruption Dynamics Induced by High-Velocity Gas Jet Impingement.
    Prades L; Fabbri S; Dorado AD; Gamisans X; Stoodley P; Picioreanu C
    mBio; 2020 Jan; 11(1):. PubMed ID: 31911489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluid Rheological Effects on the Flow of Polymer Solutions in a Contraction-Expansion Microchannel.
    Jagdale PP; Li D; Shao X; Bostwick JB; Xuan X
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32182650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mixing of non-Newtonian fluids in wavy serpentine microchannel using electrokinetically driven flow.
    Cho CC; Chen CL; Chen CK
    Electrophoresis; 2012 Mar; 33(5):743-50. PubMed ID: 22522530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling of Power-Law Fluid Flow Inside a Piezoelectric Inkjet Printhead.
    Peng J; Huang J; Wang J
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The rise of bubbles in shear thinning viscoelastic fluids.
    Chen Q; Restagno F; Langevin D; Salonen A
    J Colloid Interface Sci; 2022 Jun; 616():360-368. PubMed ID: 35220184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.