These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25309103)

  • 1. Hydrolytically degradable thiol-ene hydrogels for protein release.
    Rehmann MS; Garibian AC; Kloxin AM
    Macromol Symp; 2013 Jul; 329(1):58-65. PubMed ID: 25309103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry.
    Shih H; Lin CC
    Biomacromolecules; 2012 Jul; 13(7):2003-12. PubMed ID: 22708824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture.
    Hao Y; Shih H; Muňoz Z; Kemp A; Lin CC
    Acta Biomater; 2014 Jan; 10(1):104-14. PubMed ID: 24021231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery.
    Aimetti AA; Machen AJ; Anseth KS
    Biomaterials; 2009 Oct; 30(30):6048-54. PubMed ID: 19674784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of model proteins and basic fibroblast growth factor from in situ forming degradable dextran hydrogels.
    Hiemstra C; Zhong Z; van Steenbergen MJ; Hennink WE; Feijen J
    J Control Release; 2007 Sep; 122(1):71-8. PubMed ID: 17658651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, Characterization, and Digital Light Processing of a Hydrolytically Degradable Hyaluronic Acid Hydrogel.
    Galarraga JH; Dhand AP; Enzmann BP; Burdick JA
    Biomacromolecules; 2023 Jan; 24(1):413-425. PubMed ID: 36516973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties.
    Zustiak SP; Leach JB
    Biomacromolecules; 2010 May; 11(5):1348-57. PubMed ID: 20355705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery.
    Wang Y; Zhang S; Benoit DSW
    J Control Release; 2018 Oct; 287():58-66. PubMed ID: 30077736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradable thiol-acrylate hydrogels as tunable matrices for three-dimensional hepatic culture.
    Hao Y; Lin CC
    J Biomed Mater Res A; 2014 Nov; 102(11):3813-27. PubMed ID: 24288169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained release of multicomponent platelet-rich plasma proteins from hydrolytically degradable PEG hydrogels.
    Jain E; Sheth S; Dunn A; Zustiak SP; Sell SA
    J Biomed Mater Res A; 2017 Dec; 105(12):3304-3314. PubMed ID: 28865187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled release of an anthrax toxin-neutralizing antibody from hydrolytically degradable polyethylene glycol hydrogels.
    Liang Y; Coffin MV; Manceva SD; Chichester JA; Jones RM; Kiick KL
    J Biomed Mater Res A; 2016 Jan; 104(1):113-23. PubMed ID: 26223817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids.
    Lin CC; Raza A; Shih H
    Biomaterials; 2011 Dec; 32(36):9685-95. PubMed ID: 21924490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning Tissue Ingrowth into Proangiogenic Hydrogels via Dual Modality Degradation.
    Chokoza C; Gustafsson CA; Goetsch KP; Zilla P; Thierfelder N; Pisano F; Mura M; Gnecchi M; Bezuidenhout D; Davies NH
    ACS Biomater Sci Eng; 2019 Oct; 5(10):5430-5438. PubMed ID: 33464063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation of primary salivary gland cells in enzymatically degradable poly(ethylene glycol) hydrogels promotes acinar cell characteristics.
    Shubin AD; Felong TJ; Schutrum BE; Joe DSL; Ovitt CE; Benoit DSW
    Acta Biomater; 2017 Mar; 50():437-449. PubMed ID: 28039063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ethylene glycol)-based thiol-ene hydrogel coatings-curing chemistry, aqueous stability, and potential marine antifouling applications.
    Lundberg P; Bruin A; Klijnstra JW; Nyström AM; Johansson M; Malkoch M; Hult A
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):903-12. PubMed ID: 20356297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of thiol-ene photoclick hydrogels using facile techniques for cell culture applications†Electronic supplementary information (ESI) available. See DOI: 10.1039/c4bm00187gClick here for additional data file.
    Sawicki LA; Kloxin AM
    Biomater Sci; 2014 Nov; 2(11):1612-1626. PubMed ID: 25717375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol).
    Loh XJ; Goh SH; Li J
    Biomaterials; 2007 Oct; 28(28):4113-23. PubMed ID: 17573109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol-ene click hydrogels for therapeutic delivery.
    Kharkar PM; Rehmann MS; Skeens KM; Maverakis E; Kloxin AM
    ACS Biomater Sci Eng; 2016 Feb; 2(2):165-179. PubMed ID: 28361125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels.
    Anderson SB; Lin CC; Kuntzler DV; Anseth KS
    Biomaterials; 2011 May; 32(14):3564-74. PubMed ID: 21334063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.