These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25309309)

  • 1. Abnormal cross-frequency coupling in the tinnitus network.
    Adamchic I; Langguth B; Hauptmann C; Tass PA
    Front Neurosci; 2014; 8():284. PubMed ID: 25309309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes of oscillatory activity in pitch processing network and related tinnitus relief induced by acoustic CR neuromodulation.
    Adamchic I; Hauptmann C; Tass PA
    Front Syst Neurosci; 2012; 6():18. PubMed ID: 22493570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute effects and after-effects of acoustic coordinated reset neuromodulation in patients with chronic subjective tinnitus.
    Adamchic I; Toth T; Hauptmann C; Walger M; Langguth B; Klingmann I; Tass PA
    Neuroimage Clin; 2017; 15():541-558. PubMed ID: 28652968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of acoustic coordinated reset neuromodulation on effective connectivity in a neural network of phantom sound.
    Silchenko AN; Adamchic I; Hauptmann C; Tass PA
    Neuroimage; 2013 Aug; 77():133-47. PubMed ID: 23528923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversing pathologically increased EEG power by acoustic coordinated reset neuromodulation.
    Adamchic I; Toth T; Hauptmann C; Tass PA
    Hum Brain Mapp; 2014 May; 35(5):2099-118. PubMed ID: 23907785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberrant thalamocortical coherence in an animal model of tinnitus.
    Vianney-Rodrigues P; Auerbach BD; Salvi R
    J Neurophysiol; 2019 Mar; 121(3):893-907. PubMed ID: 30625004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus.
    Ahn MH; Hong SK; Min BK
    Hear Res; 2017 Dec; 356():63-73. PubMed ID: 29097049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genuine cross-frequency coupling networks in human resting-state electrophysiological recordings.
    Siebenhühner F; Wang SH; Arnulfo G; Lampinen A; Nobili L; Palva JM; Palva S
    PLoS Biol; 2020 May; 18(5):e3000685. PubMed ID: 32374723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-Frequency Coupling Based Neuromodulation for Treating Neurological Disorders.
    Salimpour Y; Anderson WS
    Front Neurosci; 2019; 13():125. PubMed ID: 30846925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-subject oscillatory γ responses in tinnitus.
    Sedley W; Teki S; Kumar S; Barnes GR; Bamiou DE; Griffiths TD
    Brain; 2012 Oct; 135(Pt 10):3089-100. PubMed ID: 22975389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Psychoacoustic tinnitus loudness and tinnitus-related distress show different associations with oscillatory brain activity.
    Balkenhol T; Wallhäusser-Franke E; Delb W
    PLoS One; 2013; 8(1):e53180. PubMed ID: 23326394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality.
    Lozano-Soldevilla D; Ter Huurne N; Oostenveld R
    Front Comput Neurosci; 2016; 10():87. PubMed ID: 27597822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient reduction of tinnitus intensity is marked by concomitant reductions of delta band power.
    Kahlbrock N; Weisz N
    BMC Biol; 2008 Jan; 6():4. PubMed ID: 18199318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction in LFP cross-frequency coupling between theta and gamma rhythms associated with impaired STP and LTP in a rat model of brain ischemia.
    Xu X; Zheng C; Zhang T
    Front Comput Neurosci; 2013; 7():27. PubMed ID: 23576981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delta-mediated cross-frequency coupling organizes oscillatory activity across the rat cortico-basal ganglia network.
    López-Azcárate J; Nicolás MJ; Cordon I; Alegre M; Valencia M; Artieda J
    Front Neural Circuits; 2013; 7():155. PubMed ID: 24106462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neural correlates of subjectively perceived and passively matched loudness perception in auditory phantom perception.
    De Ridder D; Congedo M; Vanneste S
    Brain Behav; 2015 May; 5(5):e00331. PubMed ID: 25874164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-amplitude cross-frequency coupling in EEG-derived cortical time series upon an auditory perception task.
    Papadaniil CD; Kosmidou VE; Tsolaki A; Tsolaki M; Kompatsiaris IY; Hadjileontiadis LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4150-3. PubMed ID: 26737208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delta, theta, beta, and gamma brain oscillations index levels of auditory sentence processing.
    Mai G; Minett JW; Wang WS
    Neuroimage; 2016 Jun; 133():516-528. PubMed ID: 26931813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The corticofugal oscillatory modulation of the cochlear receptor during auditory and visual attention is preserved in tinnitus.
    Donoso-San Martín R; Leiva A; Dragicevic CD; Medel V; Delano PH
    Front Neural Circuits; 2023; 17():1301962. PubMed ID: 38239605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress-Related Functional Connectivity Changes Between Auditory Cortex and Cingulate in Tinnitus.
    Vanneste S; De Ridder D
    Brain Connect; 2015 Aug; 5(6):371-83. PubMed ID: 25611454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.