These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25309395)

  • 1. Control of motor unit firing during step-like increases in voluntary force.
    Hu X; Rymer WZ; Suresh NL
    Front Hum Neurosci; 2014; 8():721. PubMed ID: 25309395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor unit firing rate patterns during voluntary muscle force generation: a simulation study.
    Hu X; Rymer WZ; Suresh NL
    J Neural Eng; 2014 Apr; 11(2):026015. PubMed ID: 24658323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of the motor-unit pool for different directions of isometric contraction of the first dorsal interosseous muscle.
    Lei Y; Suresh NL; Rymer WZ; Hu X
    Muscle Nerve; 2018 Jan; 57(1):E85-E93. PubMed ID: 28877550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Firing rate trajectories of human motor units during isometric ramp contractions to 10, 25 and 50% of maximal voluntary contraction.
    Zero AM; Kirk EA; Hali K; Rice CL
    Neurosci Lett; 2021 Sep; 762():136118. PubMed ID: 34280505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the 'reverse onion skin' phenomenon more prevalent than we thought during intramuscular myoelectric recordings from low to maximal force outputs?
    Inglis JG; Gabriel DA
    Neurosci Lett; 2021 Jan; 743():135583. PubMed ID: 33352279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor unit pool organization examined via spike-triggered averaging of the surface electromyogram.
    Hu X; Rymer WZ; Suresh NL
    J Neurophysiol; 2013 Sep; 110(5):1205-20. PubMed ID: 23699053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the contractile properties of muscle on motor unit firing rates during a moderate-intensity contraction in vivo.
    Trevino MA; Herda TJ; Fry AC; Gallagher PM; Vardiman JP; Mosier EM; Miller JD
    J Neurophysiol; 2016 Aug; 116(2):552-62. PubMed ID: 27146989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing intrinsic from extrinsic factors underlying firing rate saturation in human motor units.
    Fuglevand AJ; Lester RA; Johns RK
    J Neurophysiol; 2015 Mar; 113(5):1310-22. PubMed ID: 25475356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor unit control properties in constant-force isometric contractions.
    de Luca CJ; Foley PJ; Erim Z
    J Neurophysiol; 1996 Sep; 76(3):1503-16. PubMed ID: 8890270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Firing rate trajectories of human occipitofrontalis motor units in response to triangular voluntary contraction intensity.
    Kirk EA; Zero AM; Rice CL
    Exp Brain Res; 2021 Dec; 239(12):3661-3670. PubMed ID: 34617127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography.
    Hu X; Suresh AK; Rymer WZ; Suresh NL
    J Neural Eng; 2016 Aug; 13(4):046025. PubMed ID: 27432656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor control of low-threshold motor units in the human trapezius muscle.
    Westgaard RH; De Luca CJ
    J Neurophysiol; 2001 Apr; 85(4):1777-81. PubMed ID: 11287499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor unit recruitment and firing rate at low force of contraction.
    Nandedkar SD; Barkhaus PE; Stålberg EV
    Muscle Nerve; 2022 Dec; 66(6):750-756. PubMed ID: 36214178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding firings of a large population of human motor units from high-density surface electromyogram in response to transcranial magnetic stimulation.
    Škarabot J; Ammann C; Balshaw TG; Divjak M; Urh F; Murks N; Foffani G; Holobar A
    J Physiol; 2023 May; 601(10):1719-1744. PubMed ID: 36946417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The orderly recruitment of motor units may be modified when a muscle is acting as an antagonist.
    Magnuson JR; Dalton BH; McNeil CJ
    J Appl Physiol (1985); 2023 Sep; 135(3):519-526. PubMed ID: 37439237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hand dominance and motor unit firing behavior.
    Adam A; De Luca CJ; Erim Z
    J Neurophysiol; 1998 Sep; 80(3):1373-82. PubMed ID: 9744946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence of widespread motor-unit firing correlations in muscle contractions: their role in the generation of tremor and time-varying voluntary force.
    Erimaki S; Christakos CN
    J Neurophysiol; 1999 Nov; 82(5):2839-46. PubMed ID: 10561452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the motor unit firing rates and amplitudes in relation to recruitment thresholds during submaximal contractions of the first dorsal interosseous between chronically resistance-trained and physically active men.
    Sterczala AJ; Miller JD; Trevino MA; Dimmick HL; Herda TJ
    Appl Physiol Nutr Metab; 2018 Aug; 43(8):759-768. PubMed ID: 29481763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inability to increase the neural drive to muscle is associated with task failure during submaximal contractions.
    Martinez-Valdes E; Negro F; Falla D; Dideriksen JL; Heckman CJ; Farina D
    J Neurophysiol; 2020 Oct; 124(4):1110-1121. PubMed ID: 32877309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical benefits of the Onion-Skin motor unit control scheme.
    De Luca CJ; Contessa P
    J Biomech; 2015 Jan; 48(2):195-203. PubMed ID: 25527890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.