BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 25309431)

  • 1. "Is dopamine involved in Alzheimer's disease?".
    Martorana A; Koch G
    Front Aging Neurosci; 2014; 6():252. PubMed ID: 25309431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of neurodegeneration in Alzheimer's disease.
    Crews L; Masliah E
    Hum Mol Genet; 2010 Apr; 19(R1):R12-20. PubMed ID: 20413653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alzheimer's Disease is Driven by Intraneuronally Retained Beta-Amyloid Produced in the AD-Specific, βAPP-Independent Pathway: Current Perspective and Experimental Models for Tomorrow.
    Volloch V; Olsen B; Rits S
    Ann Integr Mol Med; 2020; 2(1):90-114. PubMed ID: 32617536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-amyloid, neuronal death and Alzheimer's disease.
    Carter J; Lippa CF
    Curr Mol Med; 2001 Dec; 1(6):733-7. PubMed ID: 11899259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vicious cycles within the neuropathophysiologic mechanisms of Alzheimer's disease.
    Standridge JB
    Curr Alzheimer Res; 2006 Apr; 3(2):95-108. PubMed ID: 16611010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precursor-Independent Overproduction of Beta-Amyloid in AD: Mitochondrial Dysfunction as Possible Initiator of Asymmetric RNA-Dependent βAPP mRNA Amplification. An Engine that Drives Alzheimer's Disease.
    Volloch V; Olsen BR; Rits S
    Ann Integr Mol Med; 2019; 1(1):61-74. PubMed ID: 31858090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment.
    Moreno-Castilla P; Rodriguez-Duran LF; Guzman-Ramos K; Barcenas-Femat A; Escobar ML; Bermudez-Rattoni F
    Neurobiol Aging; 2016 May; 41():187-199. PubMed ID: 27103531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer's disease.
    Nava-Mesa MO; Jiménez-Díaz L; Yajeya J; Navarro-Lopez JD
    Front Cell Neurosci; 2014; 8():167. PubMed ID: 24987334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer's disease.
    Ma KG; Qian YH
    Neuropeptides; 2019 Feb; 73():96-106. PubMed ID: 30579679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alzheimer's disease: synapses gone cold.
    Koffie RM; Hyman BT; Spires-Jones TL
    Mol Neurodegener; 2011 Aug; 6(1):63. PubMed ID: 21871088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the Effects of Yoga on the Progression of Alzheimer's Disease in a Dish.
    Hassan A; Robinson M; Willerth SM
    Cells Tissues Organs; 2018; 206(4-5):263-271. PubMed ID: 31121578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review.
    Dinda B; Dinda M; Kulsi G; Chakraborty A; Dinda S
    Eur J Med Chem; 2019 May; 169():185-199. PubMed ID: 30877973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network dysfunction in Alzheimer's disease: does synaptic scaling drive disease progression?
    Small DH
    Trends Mol Med; 2008 Mar; 14(3):103-8. PubMed ID: 18262842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models.
    Sebastian Monasor L; Müller SA; Colombo AV; Tanrioever G; König J; Roth S; Liesz A; Berghofer A; Piechotta A; Prestel M; Saito T; Saido TC; Herms J; Willem M; Haass C; Lichtenthaler SF; Tahirovic S
    Elife; 2020 Jun; 9():. PubMed ID: 32510331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent effect of oligomeric amyloid-β (1-42)-induced hippocampal neurodegeneration in rat model of Alzheimer's disease.
    Karthick C; Nithiyanandan S; Essa MM; Guillemin GJ; Jayachandran SK; Anusuyadevi M
    Neurol Res; 2019 Feb; 41(2):139-150. PubMed ID: 30453864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding How Physical Exercise Improves Alzheimer's Disease: Cholinergic and Monoaminergic Systems.
    Zong B; Yu F; Zhang X; Zhao W; Sun P; Li S; Li L
    Front Aging Neurosci; 2022; 14():869507. PubMed ID: 35663578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease.
    Pulliam L; Sun B; Mustapic M; Chawla S; Kapogiannis D
    J Neurovirol; 2019 Oct; 25(5):702-709. PubMed ID: 30610738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (Dys)regulation of Synaptic Activity and Neurotransmitter Release by β-Amyloid: A Look Beyond Alzheimer's Disease Pathogenesis.
    Fagiani F; Lanni C; Racchi M; Govoni S
    Front Mol Neurosci; 2021; 14():635880. PubMed ID: 33716668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TNF-α-mediated reduction in inhibitory neurotransmission precedes sporadic Alzheimer's disease pathology in young Trem2
    Ren S; Breuillaud L; Yao W; Yin T; Norris KA; Zehntner SP; D'Adamio L
    J Biol Chem; 2021; 296():100089. PubMed ID: 33434745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.