These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25309616)

  • 1. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage.
    Zhang Y; Xu S; Fu H; Lee J; Su J; Hwang KC; Rogers JA; Huang Y
    Soft Matter; 2013; 9(33):8062-8070. PubMed ID: 25309616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite deformation model of planar serpentine interconnects for stretchable electronics.
    Fan Z; Zhang Y; Ma Q; Zhang F; Fu H; Hwang KC; Huang Y
    Int J Solids Struct; 2016 Aug; 91():46-54. PubMed ID: 27695135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable Micromotion Sensor with Enhanced Sensitivity Using Serpentine Layout.
    Yan Z; Pan T; Wang D; Li J; Jin L; Huang L; Jiang J; Qi Z; Zhang H; Gao M; Yang W; Lin Y
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12261-12271. PubMed ID: 30807090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Buckling-driven self-assembly of self-similar inspired micro/nanofibers for ultra-stretchable electronics.
    Bian J; Ding Y; Duan Y; Wan X; Huang Y
    Soft Matter; 2017 Oct; 13(40):7244-7254. PubMed ID: 28944394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Overstretch Strategy to Double the Designed Elastic Stretchability of Stretchable Electronics.
    Li J; Wu X; Su Y
    Adv Mater; 2023 Jul; 35(28):e2300340. PubMed ID: 37022130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hierarchical Theory for the Tensile Stiffness of Non-Buckling Fractal-Inspired Interconnects.
    Wang Y; Zhou Z; Li R; Wang J; Sha B; Li S; Su Y
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers.
    Duan Y; Ding Y; Bian J; Xu Z; Yin Z; Huang Y
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30966018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics.
    Wang S; Huang Y; Rogers JA
    IEEE Trans Compon Packaging Manuf Technol; 2015 Sep; 5(9):1201-1218. PubMed ID: 27668126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials.
    Song H; Luo G; Ji Z; Bo R; Xue Z; Yan D; Zhang F; Bai K; Liu J; Cheng X; Pang W; Shen Z; Zhang Y
    Sci Adv; 2022 Mar; 8(11):eabm3785. PubMed ID: 35294232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretchable, Bifacial Si-Organic Hybrid Solar Cells by Vertical Array of Si Micropillars Embedded into Elastomeric Substrates.
    Yoon SS; Khang DY
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3290-3298. PubMed ID: 30592216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-Stretchable Interconnects for High-Density Stretchable Electronics.
    Shafqat S; Hoefnagels JPM; Savov A; Joshi S; Dekker R; Geers MGD
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printing Stretchable Spiral Interconnects Using Reactive Ink Chemistries.
    Mamidanna A; Song Z; Lv C; Lefky CS; Jiang H; Hildreth OJ
    ACS Appl Mater Interfaces; 2016 May; 8(20):12594-8. PubMed ID: 27158736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The equivalent medium of cellular substrate under large stretching, with applications to stretchable electronics.
    Chen H; Zhu F; Jang KI; Feng X; Rogers JA; Zhang Y; Huang Y; Ma Y
    J Mech Phys Solids; 2018 Nov; 120():199-207. PubMed ID: 30140108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serpentine-pattern effects on the biaxial stretching of percolative graphene nanoflake films.
    Chun S; Cho SB; Son W; Kim Y; Jung H; Kim YJ; Choi C
    Nanotechnology; 2019 Nov; 31(8):085303. PubMed ID: 31769411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Buckling of a stiff thin film on an elastic graded compliant substrate.
    Chen Z; Chen W; Song J
    Proc Math Phys Eng Sci; 2017 Dec; 473(2208):20170410. PubMed ID: 29290731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation.
    Liu Y; Yan Z; Lin Q; Guo X; Han M; Nan K; Hwang KC; Huang Y; Zhang Y; Rogers JA
    Adv Funct Mater; 2016 May; 26(17):2909-2918. PubMed ID: 27499728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Plane Deformation Mechanics for Highly Stretchable Electronics.
    Su Y; Ping X; Yu KJ; Lee JW; Fan JA; Wang B; Li M; Li R; Harburg DV; Huang Y; Yu C; Mao S; Shim J; Yang Q; Lee PY; Armonas A; Choi KJ; Yang Y; Paik U; Chang T; Dawidczyk TJ; Huang Y; Wang S; Rogers JA
    Adv Mater; 2017 Feb; 29(8):. PubMed ID: 28004863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical serpentine interconnect-enabled stretchable and curved electronics.
    Jiao R; Wang R; Wang Y; Cheung YK; Chen X; Wang X; Deng Y; Yu H
    Microsyst Nanoeng; 2023; 9():149. PubMed ID: 38025886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Island Effect in Stretchable Inorganic Electronics.
    Li K; Shuai Y; Cheng X; Luan H; Liu S; Yang C; Xue Z; Huang Y; Zhang Y
    Small; 2022 Apr; 18(17):e2107879. PubMed ID: 35307953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyses of postbuckling in stretchable arrays of nanostructures for wide-band tunable plasmonics.
    Shi Y; Luo H; Gao L; Gao C; Rogers JA; Huang Y; Zhang Y
    Proc Math Phys Eng Sci; 2015 Nov; 471(2183):20150632. PubMed ID: 31474805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.