These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. OPTIMAL COMPUTATIONAL AND STATISTICAL RATES OF CONVERGENCE FOR SPARSE NONCONVEX LEARNING PROBLEMS. Wang Z; Liu H; Zhang T Ann Stat; 2014; 42(6):2164-2201. PubMed ID: 25544785 [TBL] [Abstract][Full Text] [Related]
3. A Nonconvex Optimization Framework for Low Rank Matrix Estimation. Zhao T; Wang Z; Liu H Adv Neural Inf Process Syst; 2015; 28():559-567. PubMed ID: 28316458 [TBL] [Abstract][Full Text] [Related]
4. Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. Nikolova M; Ng MK; Tam CP IEEE Trans Image Process; 2010 Dec; 19(12):3073-88. PubMed ID: 20542766 [TBL] [Abstract][Full Text] [Related]
5. A fast majorize-minimize algorithm for the recovery of sparse and low-rank matrices. Hu Y; Lingala SG; Jacob M IEEE Trans Image Process; 2012 Feb; 21(2):742-53. PubMed ID: 21859601 [TBL] [Abstract][Full Text] [Related]
6. Efficient Recovery of Low-Rank Matrix via Double Nonconvex Nonsmooth Rank Minimization. Zhang H; Gong C; Qian J; Zhang B; Xu C; Yang J IEEE Trans Neural Netw Learn Syst; 2019 Oct; 30(10):2916-2925. PubMed ID: 30892254 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous grouping pursuit and feature selection over an undirected graph. Zhu Y; Shen X; Pan W J Am Stat Assoc; 2013 Jan; 108(502):713-725. PubMed ID: 24098061 [TBL] [Abstract][Full Text] [Related]
8. Nonconvex Sparse Regularization for Deep Neural Networks and Its Optimality. Ohn I; Kim Y Neural Comput; 2022 Jan; 34(2):476-517. PubMed ID: 34758482 [TBL] [Abstract][Full Text] [Related]
9. Constrained Low-Rank Learning Using Least Squares-Based Regularization. Li P; Yu J; Wang M; Zhang L; Cai D; Li X IEEE Trans Cybern; 2017 Dec; 47(12):4250-4262. PubMed ID: 27849552 [TBL] [Abstract][Full Text] [Related]
10. Nonconvex Nonsmooth Low Rank Minimization via Iteratively Reweighted Nuclear Norm. Lu C; Tang J; Yan S; Lin Z IEEE Trans Image Process; 2016 Feb; 25(2):829-39. PubMed ID: 26841392 [TBL] [Abstract][Full Text] [Related]
11. Poisson noisy image restoration via overlapping group sparse and nonconvex second-order total variation priors. Jon K; Liu J; Lv X; Zhu W PLoS One; 2021; 16(4):e0250260. PubMed ID: 33878121 [TBL] [Abstract][Full Text] [Related]
12. Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization. Lu C; Lin Z; Yan S IEEE Trans Image Process; 2015 Feb; 24(2):646-54. PubMed ID: 25531948 [TBL] [Abstract][Full Text] [Related]
13. Hyperspectral Images Denoising via Nonconvex Regularized Low-Rank and Sparse Matrix Decomposition. Xie T; Li S; Sun B IEEE Trans Image Process; 2020; 29():44-56. PubMed ID: 31329555 [TBL] [Abstract][Full Text] [Related]
14. Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares. Zhang C; Zhang T; Li M; Peng C; Liu Z; Zheng J Biomed Eng Online; 2016 Jun; 15(1):66. PubMed ID: 27316680 [TBL] [Abstract][Full Text] [Related]
15. NOISY MATRIX COMPLETION: UNDERSTANDING STATISTICAL GUARANTEES FOR CONVEX RELAXATION VIA NONCONVEX OPTIMIZATION. Chen Y; Chi Y; Fan J; Ma C; Yan Y SIAM J Optim; 2020; 30(4):3098-3121. PubMed ID: 34305368 [TBL] [Abstract][Full Text] [Related]
16. Nonconvex low-rank tensor approximation with graph and consistent regularizations for multi-view subspace learning. Pan B; Li C; Che H Neural Netw; 2023 Apr; 161():638-658. PubMed ID: 36827961 [TBL] [Abstract][Full Text] [Related]
17. Robust Low-Rank Tensor Recovery via Nonconvex Singular Value Minimization. Chen L; Jiang X; Liu X; Zhou Z IEEE Trans Image Process; 2020 Sep; PP():. PubMed ID: 32946392 [TBL] [Abstract][Full Text] [Related]
18. Efficient algorithm for nonconvex minimization and its application to PM regularization. Li WP; Wang ZM; Deng Y IEEE Trans Image Process; 2012 Oct; 21(10):4322-33. PubMed ID: 22829405 [TBL] [Abstract][Full Text] [Related]
19. Performance evaluation of typical approximation algorithms for nonconvex ℓp-minimization in diffuse optical tomography. Shaw CB; Yalavarthy PK J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):852-62. PubMed ID: 24695149 [TBL] [Abstract][Full Text] [Related]
20. Least squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography. Shaw CB; Prakash J; Pramanik M; Yalavarthy PK J Biomed Opt; 2013 Aug; 18(8):80501. PubMed ID: 23903561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]