BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25309881)

  • 1. The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion.
    Kabeiseman EJ; Cichos KH; Moore ER
    Front Cell Infect Microbiol; 2014; 4():129. PubMed ID: 25309881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.
    Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA
    Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane.
    Moore ER; Mead DJ; Dooley CA; Sager J; Hackstadt T
    Microbiology (Reading); 2011 Mar; 157(Pt 3):830-838. PubMed ID: 21109560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vesicle-associated membrane protein 4 and syntaxin 6 interactions at the chlamydial inclusion.
    Kabeiseman EJ; Cichos K; Hackstadt T; Lucas A; Moore ER
    Infect Immun; 2013 Sep; 81(9):3326-37. PubMed ID: 23798538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic SNARE VAMP3 Dynamically Interacts with Multiple Chlamydial Inclusion Membrane Proteins.
    Bui DC; Jorgenson LM; Ouellette SP; Rucks EA
    Infect Immun; 2021 Jan; 89(2):. PubMed ID: 33229367
    [No Abstract]   [Full Text] [Related]  

  • 6. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shifting proteomes: limitations in using the BioID proximity labeling system to study SNARE protein trafficking during infection with intracellular pathogens.
    Jorgenson LM; Olson-Wood MG; Rucks EA
    Pathog Dis; 2021 Aug; 79(7):. PubMed ID: 34323972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins.
    Moore ER; Ouellette SP
    Front Cell Infect Microbiol; 2014; 4():157. PubMed ID: 25401095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner.
    Rzomp KA; Scholtes LD; Briggs BJ; Whittaker GR; Scidmore MA
    Infect Immun; 2003 Oct; 71(10):5855-70. PubMed ID: 14500507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydia trachomatis homotypic inclusion fusion is promoted by host microtubule trafficking.
    Richards TS; Knowlton AE; Grieshaber SS
    BMC Microbiol; 2013 Aug; 13():185. PubMed ID: 23919807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia trachomatis hijacks intra-Golgi COG complex-dependent vesicle trafficking pathway.
    Pokrovskaya ID; Szwedo JW; Goodwin A; Lupashina TV; Nagarajan UM; Lupashin VV
    Cell Microbiol; 2012 May; 14(5):656-68. PubMed ID: 22233276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins.
    Andersen SE; Bulman LM; Steiert B; Faris R; Weber MM
    Pathog Dis; 2021 Feb; 79(2):. PubMed ID: 33512479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proximity-dependent proteomics of the Chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites.
    Dickinson MS; Anderson LN; Webb-Robertson BM; Hansen JR; Smith RD; Wright AT; Hybiske K
    PLoS Pathog; 2019 Apr; 15(4):e1007698. PubMed ID: 30943267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlamydia trachomatis and its interaction with the cellular retromer.
    Banhart S; Rose L; Aeberhard L; Koch-Edelmann S; Heuer D
    Int J Med Microbiol; 2018 Jan; 308(1):197-205. PubMed ID: 29122514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chlamydial inclusion: escape from the endocytic pathway.
    Fields KA; Hackstadt T
    Annu Rev Cell Dev Biol; 2002; 18():221-45. PubMed ID: 12142274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional cooperation of two independent targeting domains in syntaxin 6 is required for its efficient localization in the trans-golgi network of 3T3L1 adipocytes.
    Watson RT; Pessin JE
    J Biol Chem; 2000 Jan; 275(2):1261-8. PubMed ID: 10625671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rab6 effector Bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-specific manner.
    Moorhead AR; Rzomp KA; Scidmore MA
    Infect Immun; 2007 Feb; 75(2):781-91. PubMed ID: 17101644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Proximity Labeling System to Map the
    Rucks EA; Olson MG; Jorgenson LM; Srinivasan RR; Ouellette SP
    Front Cell Infect Microbiol; 2017; 7():40. PubMed ID: 28261569
    [No Abstract]   [Full Text] [Related]  

  • 19. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural analysis of chlamydial antigen-containing vesicles everting from the Chlamydia trachomatis inclusion.
    Giles DK; Whittimore JD; LaRue RW; Raulston JE; Wyrick PB
    Microbes Infect; 2006 May; 8(6):1579-91. PubMed ID: 16698305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.