These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25309881)

  • 21. Fluorescence lifetime imaging unravels C. trachomatis metabolism and its crosstalk with the host cell.
    Szaszák M; Steven P; Shima K; Orzekowsky-Schröder R; Hüttmann G; König IR; Solbach W; Rupp J
    PLoS Pathog; 2011 Jul; 7(7):e1002108. PubMed ID: 21779161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane.
    Bannantine JP; Griffiths RS; Viratyosin W; Brown WJ; Rockey DD
    Cell Microbiol; 2000 Feb; 2(1):35-47. PubMed ID: 11207561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cross Talk between ARF1 and RhoA Coordinates the Formation of Cytoskeletal Scaffolds during Chlamydia Infection.
    Haines A; Wesolowski J; Ryan NM; Monteiro-Brás T; Paumet F
    mBio; 2021 Dec; 12(6):e0239721. PubMed ID: 34903051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proximity Labeling of the Chlamydia trachomatis Inclusion Membrane.
    Olson MG; Jorgenson LM; Widner RE; Rucks EA
    Methods Mol Biol; 2019; 2042():245-278. PubMed ID: 31385281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network.
    Mital J; Miller NJ; Fischer ER; Hackstadt T
    Cell Microbiol; 2010 Sep; 12(9):1235-49. PubMed ID: 20331642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chlamydia trachomatis CT229 Subverts Rab GTPase-Dependent CCV Trafficking Pathways to Promote Chlamydial Infection.
    Faris R; Merling M; Andersen SE; Dooley CA; Hackstadt T; Weber MM
    Cell Rep; 2019 Mar; 26(12):3380-3390.e5. PubMed ID: 30893609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Coinfection Model to Evaluate Chlamydia Inc Protein Interactions.
    Ende R; Derré I
    Methods Mol Biol; 2019; 2042():205-218. PubMed ID: 31385278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2.
    Olson-Wood MG; Jorgenson LM; Ouellette SP; Rucks EA
    Infect Immun; 2021 Jun; 89(7):e0009421. PubMed ID: 33875478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Apical targeting of syntaxin 3 is essential for epithelial cell polarity.
    Sharma N; Low SH; Misra S; Pallavi B; Weimbs T
    J Cell Biol; 2006 Jun; 173(6):937-48. PubMed ID: 16785322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Human Centrosomal Protein CCDC146 Binds
    Almeida F; Luís MP; Pereira IS; Pais SV; Mota LJ
    Front Cell Infect Microbiol; 2018; 8():254. PubMed ID: 30094225
    [No Abstract]   [Full Text] [Related]  

  • 31. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells.
    van Ooij C; Apodaca G; Engel J
    Infect Immun; 1997 Feb; 65(2):758-66. PubMed ID: 9009339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chlamydia trachomatis inclusion membrane protein MrcA interacts with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to regulate extrusion formation.
    Nguyen PH; Lutter EI; Hackstadt T
    PLoS Pathog; 2018 Mar; 14(3):e1006911. PubMed ID: 29543918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of Wnt Signaling Pathways Impairs
    Kintner J; Moore CG; Whittimore JD; Butler M; Hall JV
    Front Cell Infect Microbiol; 2017; 7():501. PubMed ID: 29322031
    [No Abstract]   [Full Text] [Related]  

  • 34. Eukaryotic Clathrin Adapter Protein and Mediator of Cholesterol Homeostasis, PICALM, Affects Trafficking to the Chlamydial Inclusion.
    Jorgenson LM; Knight L; Widner RE; Rucks EA
    Mol Cell Biol; 2023 Feb; 43(2):1-13. PubMed ID: 36779337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sphingolipid trafficking and purification in Chlamydia trachomatis-infected cells.
    Moore ER
    Curr Protoc Microbiol; 2012 Nov; Chapter 11():Unit 11A.2.. PubMed ID: 23184593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication.
    Damiani MT; Gambarte Tudela J; Capmany A
    Cell Microbiol; 2014 Sep; 16(9):1329-38. PubMed ID: 24948448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transmembrane domain length determines intracellular membrane compartment localization of syntaxins 3, 4, and 5.
    Watson RT; Pessin JE
    Am J Physiol Cell Physiol; 2001 Jul; 281(1):C215-23. PubMed ID: 11401844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic Inactivation of
    Shaw JH; Key CE; Snider TA; Sah P; Shaw EI; Fisher DJ; Lutter EI
    Front Cell Infect Microbiol; 2018; 8():415. PubMed ID: 30555802
    [No Abstract]   [Full Text] [Related]  

  • 39. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development.
    Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.