These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 25309983)

  • 61. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.
    Hartwig JF
    Acc Chem Res; 2012 Jun; 45(6):864-73. PubMed ID: 22075137
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Substrate activation strategies in rhodium(III)-catalyzed selective functionalization of arenes.
    Song G; Li X
    Acc Chem Res; 2015 Apr; 48(4):1007-20. PubMed ID: 25844661
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Unexpected intermediates and products in the C-F bond activation of tetrafluorobenzenes with a bis(triethylphosphine)nickel synthon: direct evidence of a rapid and reversible C-H bond activation by Ni(0).
    Johnson SA; Huff CW; Mustafa F; Saliba M
    J Am Chem Soc; 2008 Dec; 130(51):17278-80. PubMed ID: 19049278
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Metal-catalyzed direct alkylations of (hetero)arenes via C-H bond cleavages with unactivated alkyl halides.
    Ackermann L
    Chem Commun (Camb); 2010 Jul; 46(27):4866-77. PubMed ID: 20532309
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Rhodium(III)-catalyzed arene and alkene C-H bond functionalization leading to indoles and pyrroles.
    Stuart DR; Alsabeh P; Kuhn M; Fagnou K
    J Am Chem Soc; 2010 Dec; 132(51):18326-39. PubMed ID: 21133376
    [TBL] [Abstract][Full Text] [Related]  

  • 66. How absorbed hydrogen affects the catalytic activity of transition metals.
    Aleksandrov HA; Kozlov SM; Schauermann S; Vayssilov GN; Neyman KM
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13371-5. PubMed ID: 25294745
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Synthesis of vinyl sulfides by copper-catalyzed decarboxylative C-S cross-coupling.
    Ranjit S; Duan Z; Zhang P; Liu X
    Org Lett; 2010 Sep; 12(18):4134-6. PubMed ID: 20726572
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Time-resolved study on the reactions of organic selenides with hydroxyl and oxide radicals, hydrated electrons, and H-atoms in aqueous solution, and DFT calculations of transients in comparison with sulfur analogues.
    Tobien T; Bonifacić M; Naumov S; Asmus KD
    Phys Chem Chem Phys; 2010 Jul; 12(25):6750-8. PubMed ID: 20431832
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Construction of Biologically Important Biaryl Scaffolds through Direct C-H Bond Activation: Advances and Prospects.
    Yuan S; Chang J; Yu B
    Top Curr Chem (Cham); 2020 Feb; 378(2):23. PubMed ID: 32064557
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Multiple Catalytic C-H Bond Functionalization for Natural Product Synthesis.
    Baudoin O
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17798-17809. PubMed ID: 32220111
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Key mechanistic features of enantioselective C-H bond activation reactions catalyzed by [(chiral mono-N-protected amino acid)-Pd(II)] complexes.
    Musaev DG; Kaledin A; Shi BF; Yu JQ
    J Am Chem Soc; 2012 Jan; 134(3):1690-8. PubMed ID: 22148424
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Carbon-heteroatom bond formation catalysed by organometallic complexes.
    Hartwig JF
    Nature; 2008 Sep; 455(7211):314-22. PubMed ID: 18800130
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations.
    Li CJ
    Acc Chem Res; 2009 Feb; 42(2):335-44. PubMed ID: 19220064
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Remote site-selective C-H activation directed by a catalytic bifunctional template.
    Zhang Z; Tanaka K; Yu JQ
    Nature; 2017 Mar; 543(7646):538-542. PubMed ID: 28273068
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Shining Light on C-S Bonds: Recent Advances in C-C Bond Formation Reactions via C-S Bond Cleavage under Photoredox Catalysis.
    Gao J; Feng J; Du D
    Chem Asian J; 2020 Nov; 15(22):3637-3659. PubMed ID: 32990368
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Transition-Metal-Catalyzed Redox-Neutral and Redox-Green C-H Bond Functionalization.
    Wang H; Huang H
    Chem Rec; 2016 Aug; 16(4):1807-18. PubMed ID: 27258190
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Exploration of earth-abundant transition metals (Fe, Co, and Ni) as catalysts in unreactive chemical bond activations.
    Su B; Cao ZC; Shi ZJ
    Acc Chem Res; 2015 Mar; 48(3):886-96. PubMed ID: 25679917
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Catalytic Conversion of Carbon Dioxide through C-N Bond Formation.
    Li JY; Song QW; Zhang K; Liu P
    Molecules; 2019 Jan; 24(1):. PubMed ID: 30621311
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Metal-Free Oxidative C-C Bond Formation through C-H Bond Functionalization.
    Narayan R; Matcha K; Antonchick AP
    Chemistry; 2015 Oct; 21(42):14678-93. PubMed ID: 26239615
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Roles of C-H...O=S and pi-stacking interactions in the 2-bromoacrolein complex with N-tosyl-(S)-tryptophan-derived oxazaborolidinone catalyst.
    Wong MW
    J Org Chem; 2005 Jul; 70(14):5487-93. PubMed ID: 15989330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.