These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25310160)

  • 1. Partitioning evolutive standard base excess determinants in septic shock patients.
    Park M; Noritomi DT; Toledo-Maciel A; Azevedo LC; Pizzo VR; Cruz-Neto LM
    Rev Bras Ter Intensiva; 2007 Dec; 19(4):437-43. PubMed ID: 25310160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining metabolic acidosis in patients with septic shock using Stewart approach.
    Mallat J; Michel D; Salaun P; Thevenin D; Tronchon L
    Am J Emerg Med; 2012 Mar; 30(3):391-8. PubMed ID: 21277142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic acidosis in patients with severe sepsis and septic shock: a longitudinal quantitative study.
    Noritomi DT; Soriano FG; Kellum JA; Cappi SB; Biselli PJ; Libório AB; Park M
    Crit Care Med; 2009 Oct; 37(10):2733-9. PubMed ID: 19885998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical utility of standard base excess in the diagnosis and interpretation of metabolic acidosis in critically ill patients.
    Park M; Taniguchi LU; Noritomi DT; Libório AB; Maciel AT; Cruz-Neto LM
    Braz J Med Biol Res; 2008 Mar; 41(3):241-9. PubMed ID: 18097497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stewart analysis of apparently normal acid-base state in the critically ill.
    Moviat M; van den Boogaard M; Intven F; van der Voort P; van der Hoeven H; Pickkers P
    J Crit Care; 2013 Dec; 28(6):1048-54. PubMed ID: 23910568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of a new simplified acid-base tool to the original Stewart-Figge approach: a study on cardiac surgical patients.
    Agrafiotis M; Mpliamplias D; Papathanassiou M; Ampatzidou F; Drossos G
    J Anesth; 2018 Aug; 32(4):499-505. PubMed ID: 29725827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic acid-base status in critically ill patients: is standard base excess correlated with serum lactate level?
    Noritomi DT; Sanga RR; Amaral AC; Park M
    Rev Bras Ter Intensiva; 2006 Mar; 18(1):22-6. PubMed ID: 25310323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU.
    Cusack RJ; Rhodes A; Lochhead P; Jordan B; Perry S; Ball JA; Grounds RM; Bennett ED
    Intensive Care Med; 2002 Jul; 28(7):864-9. PubMed ID: 12122523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical characterization of metabolic acidosis induced by normal saline resuscitation of patients with severe sepsis and septic shock.
    Park M; Calabrich A; Maciel AT; Zampieri FG; Taniguchi LU; Souza CE; Barboza CE; Nassar Junior AP; Azevedo LC
    Rev Bras Ter Intensiva; 2011 Jun; 23(2):176-82. PubMed ID: 25299718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical Significance of Strong Ion Gap: between ICU and Hemodialysis Patients with Metabolic Acidosis.
    Lee YS
    Electrolyte Blood Press; 2007 Jun; 5(1):1-8. PubMed ID: 24459493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of prognostic significance of strong ion gap (SIG) with other acid-base markers in the critically ill: a cohort study.
    Ho KM; Lan NS; Williams TA; Harahsheh Y; Chapman AR; Dobb GJ; Magder S
    J Intensive Care; 2016; 4():43. PubMed ID: 27366324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid-base disturbances in nephrotic syndrome: analysis using the CO
    Kasagi T; Imai H; Miura N; Suzuki K; Yoshino M; Nobata H; Nagai T; Banno S
    Clin Exp Nephrol; 2017 Oct; 21(5):866-876. PubMed ID: 28289910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients.
    Gunnerson KJ; Saul M; He S; Kellum JA
    Crit Care; 2006 Feb; 10(1):R22. PubMed ID: 16507145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnosis of acid-base derangements and mortality prediction in the trauma intensive care unit: the physiochemical approach.
    Martin M; Murray J; Berne T; Demetriades D; Belzberg H
    J Trauma; 2005 Feb; 58(2):238-43. PubMed ID: 15706182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutive physicochemical characterization of diabetic ketoacidosis in adult patients admitted to the intensive care unit.
    Lopes AD; Maciel AT; Park M
    J Crit Care; 2011 Jun; 26(3):303-10. PubMed ID: 21036529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unmeasured anions in critically ill patients: can they predict mortality?
    Rocktaeschel J; Morimatsu H; Uchino S; Bellomo R
    Crit Care Med; 2003 Aug; 31(8):2131-6. PubMed ID: 12973170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The base excess gap is not a valid tool for the quantification of unmeasured ions in cardiac surgical patients: a retrospective observational study.
    Agrafiotis M; Sileli M; Ampatzidou F; Keklikoglou I; Panousis P
    Eur J Anaesthesiol; 2013 Nov; 30(11):678-84. PubMed ID: 23867780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong ion gap is associated with mortality in pediatric burn injuries.
    Sen S; Wiktor A; Berndtson A; Greenhalgh D; Palmieri T
    J Burn Care Res; 2014; 35(4):337-41. PubMed ID: 24823334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperchloremia is the dominant cause of metabolic acidosis in the postresuscitation phase of pediatric meningococcal sepsis.
    O'Dell E; Tibby SM; Durward A; Murdoch IA
    Crit Care Med; 2007 Oct; 35(10):2390-4. PubMed ID: 17717489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human PaCO2 and standard base excess compensation for acid-base imbalance.
    Schlichtig R; Grogono AW; Severinghaus JW
    Crit Care Med; 1998 Jul; 26(7):1173-9. PubMed ID: 9671365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.