These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 25310275)

  • 1. Copper transport and trafficking at the host-bacterial pathogen interface.
    Fu Y; Chang FM; Giedroc DP
    Acc Chem Res; 2014 Dec; 47(12):3605-13. PubMed ID: 25310275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial Strategies to Maintain Zinc Metallostasis at the Host-Pathogen Interface.
    Capdevila DA; Wang J; Giedroc DP
    J Biol Chem; 2016 Sep; 291(40):20858-20868. PubMed ID: 27462080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Two-Component System CopRS Maintains Subfemtomolar Levels of Free Copper in the Periplasm of Pseudomonas aeruginosa Using a Phosphatase-Based Mechanism.
    Novoa-Aponte L; Xu C; Soncini FC; Argüello JM
    mSphere; 2020 Dec; 5(6):. PubMed ID: 33361129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathogenic adaptations to host-derived antibacterial copper.
    Chaturvedi KS; Henderson JP
    Front Cell Infect Microbiol; 2014; 4():3. PubMed ID: 24551598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-only superoxide dismutase enzymes and iron starvation stress in
    Schatzman SS; Peterson RL; Teka M; He B; Cabelli DE; Cormack BP; Culotta VC
    J Biol Chem; 2020 Jan; 295(2):570-583. PubMed ID: 31806705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc excess increases cellular demand for iron and decreases tolerance to copper in
    Xu Z; Wang P; Wang H; Yu ZH; Au-Yeung HY; Hirayama T; Sun H; Yan A
    J Biol Chem; 2019 Nov; 294(45):16978-16991. PubMed ID: 31586033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Glutathione in Buffering Excess Intracellular Copper in
    Stewart LJ; Ong CY; Zhang MM; Brouwer S; McIntyre L; Davies MR; Walker MJ; McEwan AG; Waldron KJ; Djoko KY
    mBio; 2020 Dec; 11(6):. PubMed ID: 33262259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese acquisition and homeostasis at the host-pathogen interface.
    Lisher JP; Giedroc DP
    Front Cell Infect Microbiol; 2013; 3():91. PubMed ID: 24367765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Handling of nutrient copper in the bacterial envelope.
    Stewart LJ; Thaqi D; Kobe B; McEwan AG; Waldron KJ; Djoko KY
    Metallomics; 2019 Jan; 11(1):50-63. PubMed ID: 30334058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in copper and zinc homeostasis in bacterial pathogens.
    Braymer JJ; Giedroc DP
    Curr Opin Chem Biol; 2014 Apr; 19():59-66. PubMed ID: 24463765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper homeostasis in Mycobacterium tuberculosis.
    Shi X; Darwin KH
    Metallomics; 2015 Jun; 7(6):929-34. PubMed ID: 25614981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.
    Djoko KY; Ong CL; Walker MJ; McEwan AG
    J Biol Chem; 2015 Jul; 290(31):18954-61. PubMed ID: 26055706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF.
    Padilla-Benavides T; George Thompson AM; McEvoy MM; Argüello JM
    J Biol Chem; 2014 Jul; 289(30):20492-501. PubMed ID: 24917681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BosR Is A Novel Fur Family Member Responsive to Copper and Regulating Copper Homeostasis in Borrelia burgdorferi.
    Wang P; Yu Z; Santangelo TJ; Olesik J; Wang Y; Heldwein E; Li X
    J Bacteriol; 2017 Aug; 199(16):. PubMed ID: 28583949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Copper Homeostasis at the Host-Pathogen Axis: From Bacteria to Fungi.
    Li C; Li Y; Ding C
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30621285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper homeostasis at the host-pathogen interface.
    Hodgkinson V; Petris MJ
    J Biol Chem; 2012 Apr; 287(17):13549-55. PubMed ID: 22389498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Evolution of Transition Metal Bioavailability at the Host-Pathogen Interface.
    Antelo GT; Vila AJ; Giedroc DP; Capdevila DA
    Trends Microbiol; 2021 May; 29(5):441-457. PubMed ID: 32951986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the possible roles of N-terminal His-rich domains of Cu,Zn SODs of some Gram-negative bacteria.
    Arus D; Jancsó A; Szunyogh D; Matyuska F; Nagy NV; Hoffmann E; Körtvélyesi T; Gajda T
    J Inorg Biochem; 2012 Jan; 106(1):10-8. PubMed ID: 22105012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidences for zinc (II) and copper (II) ion interactions with Mycobacterium leprae HSP18: Effect on its structure and chaperone function.
    Nandi SK; Chakraborty A; Panda AK; Kar RK; Bhunia A; Biswas A
    J Inorg Biochem; 2018 Nov; 188():62-75. PubMed ID: 30121399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cu Homeostasis in Bacteria: The Ins and Outs.
    Andrei A; Öztürk Y; Khalfaoui-Hassani B; Rauch J; Marckmann D; Trasnea PI; Daldal F; Koch HG
    Membranes (Basel); 2020 Sep; 10(9):. PubMed ID: 32962054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.