BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25310399)

  • 1. Biomechanical analysis between PEEK and titanium screw-rods spinal construct subjected to fatigue loading.
    Chou WK; Chien A; Wang JL
    J Spinal Disord Tech; 2015 Apr; 28(3):E121-5. PubMed ID: 25310399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs.
    Gornet MF; Chan FW; Coleman JC; Murrell B; Nockels RP; Taylor BA; Lanman TH; Ochoa JA
    J Biomech Eng; 2011 Aug; 133(8):081009. PubMed ID: 21950902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal motion and intradiscal pressure measurements before and after lumbar spine instrumentation with titanium or PEEK rods.
    Abode-Iyamah K; Kim SB; Grosland N; Kumar R; Belirgen M; Lim TH; Torner J; Hitchon PW
    J Clin Neurosci; 2014 Apr; 21(4):651-5. PubMed ID: 24314848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adjacent-Level Hypermobility and Instrumented-Level Fatigue Loosening With Titanium and PEEK Rods for a Pedicle Screw System: An In Vitro Study.
    Agarwal A; Ingels M; Kodigudla M; Momeni N; Goel V; Agarwal AK
    J Biomech Eng; 2016 May; 138(5):051004. PubMed ID: 26974289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical and biomechanical researches of polyetheretherketone (PEEK) rods for semi-rigid lumbar fusion: a systematic review.
    Li C; Liu L; Shi JY; Yan KZ; Shen WZ; Yang ZR
    Neurosurg Rev; 2018 Apr; 41(2):375-389. PubMed ID: 27392677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation.
    Ponnappan RK; Serhan H; Zarda B; Patel R; Albert T; Vaccaro AR
    Spine J; 2009 Mar; 9(3):263-7. PubMed ID: 18838341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation.
    Bruner HJ; Guan Y; Yoganandan N; Pintar FA; Maiman DJ; Slivka MA
    J Neurosurg Spine; 2010 Dec; 13(6):766-72. PubMed ID: 21121756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative effectiveness of PEEK rods versus titanium alloy rods in lumbar fusion: a preliminary report.
    Qi L; Li M; Zhang S; Xue J; Si H
    Acta Neurochir (Wien); 2013 Jul; 155(7):1187-93. PubMed ID: 23708088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation.
    Jacobs E; Roth AK; Arts JJ; van Rhijn LW; Willems PC
    J Mater Sci Mater Med; 2017 Aug; 28(10):148. PubMed ID: 28828753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematics and load-sharing of an anterior thoracolumbar spinal reconstruction construct with PEEK rods: An in vitro biomechanical study.
    Zhou R; Huang Z; Liu X; Tong J; Ji W; Liu S; Zhu Q
    Clin Biomech (Bristol, Avon); 2016 Dec; 40():1-7. PubMed ID: 27756005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative effectiveness of PEEK rods versus titanium alloy rods in cervical fusion in a new sheep model.
    Wu J; Shi L; Pei Y; Yang D; Gao P; Xiao X; Guo S; Li M; Li X; Guo Z
    Eur Spine J; 2020 May; 29(5):1159-1166. PubMed ID: 32008100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyetheretherketone (PEEK) Rods in Lumbar Spine Degenerative Disease: A Case Series.
    Ormond DR; Albert L; Das K
    Clin Spine Surg; 2016 Aug; 29(7):E371-5. PubMed ID: 23075859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of rod contouring on spinal construct fatigue strength.
    Lindsey C; Deviren V; Xu Z; Yeh RF; Puttlitz CM
    Spine (Phila Pa 1976); 2006 Jul; 31(15):1680-7. PubMed ID: 16816763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of plate material and screw design on stiffness and ultimate load of locked plating in osteoporotic proximal humeral fractures.
    Katthagen JC; Schwarze M; Warnhoff M; Voigt C; Hurschler C; Lill H
    Injury; 2016 Mar; 47(3):617-24. PubMed ID: 26804939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical rigidity of an all-polyetheretherketone anterior thoracolumbar spinal reconstruction construct: an in vitro corpectomy model.
    Moon SM; Ingalhalikar A; Highsmith JM; Vaccaro AR
    Spine J; 2009 Apr; 9(4):330-5. PubMed ID: 19129010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pullout strength of a novel hybrid fixation technique (Tape Locking Screw™) in soft-tissue ACL reconstruction: A biomechanical study in human and porcine bone.
    Ayzenberg M; Arango D; Gershkovich GE; Samuel PS; Saing M
    Orthop Traumatol Surg Res; 2017 Jun; 103(4):591-595. PubMed ID: 28238964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties and Corrosion Performance of Self-reinforced Composite PEEK for Proposed Use as a Modular Taper Gasket.
    Ouellette ES; Gilbert JL
    Clin Orthop Relat Res; 2016 Nov; 474(11):2414-2427. PubMed ID: 27146655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone.
    Neumann EA; Villar CC; França FM
    Braz Oral Res; 2014; 28():. PubMed ID: 25098826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intradiscal pressure changes with dynamic pedicle screw systems.
    Dath R; Sirkett DM; Gheduzzi S; Miles AW
    J Spinal Disord Tech; 2008 Jun; 21(4):241-6. PubMed ID: 18525483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible growing rods: a biomechanical pilot study of polymer rod constructs in the stability of skeletally immature spines.
    Bylski-Austrow DI; Glos DL; Bonifas AC; Carvalho MF; Coombs MC; Sturm PF
    Scoliosis Spinal Disord; 2016; 11():39. PubMed ID: 27689140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.