BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25310487)

  • 1. A novel electronic nose based on porous In2O3 microtubes sensor array for the discrimination of VOCs.
    Yang W; Wan P; Jia M; Hu J; Guan Y; Feng L
    Biosens Bioelectron; 2015 Feb; 64():547-53. PubMed ID: 25310487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cuprous Oxide Based Chemiresistive Electronic Nose for Discrimination of Volatile Organic Compounds.
    Liu B; Wu X; Kam KWL; Cheung WF; Zheng B
    ACS Sens; 2019 Nov; 4(11):3051-3055. PubMed ID: 31591885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Volatile Organic Compounds and Their Concentrations Using a Novel Method Analysis of MOS Sensors Signal.
    Gancarz M; Nawrocka A; Rusinek R
    J Food Sci; 2019 Aug; 84(8):2077-2085. PubMed ID: 31339559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Objective display and discrimination of floral odors from Amorphophallus titanum, bloomed on different dates and at different locations, using an electronic nose.
    Fujioka K; Shirasu M; Manome Y; Ito N; Kakishima S; Minami T; Tominaga T; Shimozono F; Iwamoto T; Ikeda K; Yamamoto K; Murata J; Tomizawa Y
    Sensors (Basel); 2012; 12(2):2152-61. PubMed ID: 22438757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and Gas Sensing Properties of In2O3/Au Nanorods for Detection of Volatile Organic Compounds in Exhaled Breath.
    Xing R; Xu L; Song J; Zhou C; Li Q; Liu D; Wei Song H
    Sci Rep; 2015 Jun; 5():10717. PubMed ID: 26030482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Au-modified three-dimensional In₂O₃ inverse opals: synthesis and improved performance for acetone sensing toward diagnosis of diabetes.
    Xing R; Li Q; Xia L; Song J; Xu L; Zhang J; Xie Y; Song H
    Nanoscale; 2015 Aug; 7(30):13051-60. PubMed ID: 26172336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of an electronic nose instrument to fast classification of Polish honey types.
    Dymerski T; Gębicki J; Wardencki W; Namieśnik J
    Sensors (Basel); 2014 Jun; 14(6):10709-24. PubMed ID: 24945677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a chemiresistive sensor-integrated electronic nose: a review.
    Chiu SW; Tang KT
    Sensors (Basel); 2013 Oct; 13(10):14214-47. PubMed ID: 24152879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of tea category using a portable electronic nose based on an odor imaging sensor array.
    Chen Q; Liu A; Zhao J; Ouyang Q
    J Pharm Biomed Anal; 2013 Oct; 84():77-83. PubMed ID: 23810847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Method for Generation of a Fingerprint Using Electronic Nose on the Example of Rapeseed Spoilage.
    Rusinek R; Gancarz M; Krekora M; Nawrocka A
    J Food Sci; 2019 Jan; 84(1):51-58. PubMed ID: 30557906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: system development and characterization.
    Konduru T; Rains GC; Li C
    Sensors (Basel); 2015 Jan; 15(1):1252-73. PubMed ID: 25587975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced gas sensing properties of multiple networked In2O3-core/ZnO-shell nanorod sensors.
    Park S; Kim H; Jin C; Lee C
    J Nanosci Nanotechnol; 2013 May; 13(5):3427-32. PubMed ID: 23858872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic sensing layer based on electrospun conductive polymer webs.
    Zampetti E; Pantalei S; Scalese S; Bearzotti A; De Cesare F; Spinella C; Macagnano A
    Biosens Bioelectron; 2011 Jan; 26(5):2460-5. PubMed ID: 21093248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preserve Your Books through the Smell.
    Veríssimo MIS; Oliveira JABP; Evtuguin DV; Gomes MTSR
    ACS Sens; 2019 Nov; 4(11):2915-2921. PubMed ID: 31647633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniature sensor suitable for electronic nose applications.
    Pinnaduwage LA; Gehl AC; Allman SL; Johansson A; Boisen A
    Rev Sci Instrum; 2007 May; 78(5):055101. PubMed ID: 17552854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection.
    Li Z; Zhao Q; Fan W; Zhan J
    Nanoscale; 2011 Apr; 3(4):1646-52. PubMed ID: 21279215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new analytical platform based on field-flow fractionation and olfactory sensor to improve the detection of viable and non-viable bacteria in food.
    Roda B; Mirasoli M; Zattoni A; Casale M; Oliveri P; Bigi A; Reschiglian P; Simoni P; Roda A
    Anal Bioanal Chem; 2016 Oct; 408(26):7367-77. PubMed ID: 27520323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preoxidation for colorimetric sensor array detection of VOCs.
    Lin H; Jang M; Suslick KS
    J Am Chem Soc; 2011 Oct; 133(42):16786-9. PubMed ID: 21967478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into 'fermentonomics': evaluation of volatile organic compounds (VOCs) in human disease using an electronic 'e-nose'.
    Arasaradnam RP; Quraishi N; Kyrou I; Nwokolo CU; Joseph M; Kumar S; Bardhan KD; Covington JA
    J Med Eng Technol; 2011 Feb; 35(2):87-91. PubMed ID: 21204611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and Discrimination of Volatile Organic Compounds using a Single Film Bulk Acoustic Wave Resonator with Temperature Modulation as a Multiparameter Virtual Sensor Array.
    Zeng G; Wu C; Chang Y; Zhou C; Chen B; Zhang M; Li J; Duan X; Yang Q; Pang W
    ACS Sens; 2019 Jun; 4(6):1524-1533. PubMed ID: 31132253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.