These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python. De Santis M; Storchi L; Belpassi L; Quiney HM; Tarantelli F J Chem Theory Comput; 2020 Apr; 16(4):2410-2429. PubMed ID: 32101419 [TBL] [Abstract][Full Text] [Related]
26. Dissociation energy of ekaplutonium fluoride E126F: the first diatomic with molecular spinors consisting of g atomic spinors. Malli GL J Chem Phys; 2006 Feb; 124(7):71102. PubMed ID: 16497023 [TBL] [Abstract][Full Text] [Related]
27. Revisited relativistic Dirac-Hartree-Fock X-ray scattering factors. I. Neutral atoms with Z = 2-118. Olukayode S; Froese Fischer C; Volkov A Acta Crystallogr A Found Adv; 2023 Jan; 79(Pt 1):59-79. PubMed ID: 36601764 [TBL] [Abstract][Full Text] [Related]
30. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction. Coriani S; Helgaker T; Jørgensen P; Klopper W J Chem Phys; 2004 Oct; 121(14):6591-8. PubMed ID: 15473713 [TBL] [Abstract][Full Text] [Related]
31. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals. Przybytek M; Helgaker T J Chem Phys; 2013 Aug; 139(5):054114. PubMed ID: 23927250 [TBL] [Abstract][Full Text] [Related]
32. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals. Komorovský S; Repiský M; Malkina OL; Malkin VG J Chem Phys; 2010 Apr; 132(15):154101. PubMed ID: 20423162 [TBL] [Abstract][Full Text] [Related]
33. Parity nonconservation contribution to the nuclear magnetic resonance shielding constants of chiral molecules: a four-component relativistic study. Bast R; Schwerdtfeger P; Saue T J Chem Phys; 2006 Aug; 125(6):64504. PubMed ID: 16942295 [TBL] [Abstract][Full Text] [Related]
34. Gradients for two-component quasirelativistic methods. Application to dihalogenides of element 116. van Wüllen C; Langermann N J Chem Phys; 2007 Mar; 126(11):114106. PubMed ID: 17381195 [TBL] [Abstract][Full Text] [Related]
35. The four-component DFT method for the calculation of the EPR g-tensor using a restricted magnetically balanced basis and London atomic orbitals. Misenkova D; Lemken F; Repisky M; Noga J; Malkina OL; Komorovsky S J Chem Phys; 2022 Oct; 157(16):164114. PubMed ID: 36319402 [TBL] [Abstract][Full Text] [Related]
36. PtF6(2-) dianion and its detachment spectrum: a fully relativistic study. Pernpointner M; Cederbaum LS J Chem Phys; 2007 Apr; 126(14):144310. PubMed ID: 17444715 [TBL] [Abstract][Full Text] [Related]
37. Relativistic explicit correlation: coalescence conditions and practical suggestions. Li Z; Shao S; Liu W J Chem Phys; 2012 Apr; 136(14):144117. PubMed ID: 22502511 [TBL] [Abstract][Full Text] [Related]
38. Efficient treatment of the Hartree interaction in the relativistic Kohn-Sham problem. Matveev AV; Majumder S; Rösch N J Chem Phys; 2005 Oct; 123(16):164104. PubMed ID: 16268678 [TBL] [Abstract][Full Text] [Related]
39. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry. Nakatsuji H Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372 [TBL] [Abstract][Full Text] [Related]
40. A novel Gaussian-Sinc mixed basis set for electronic structure calculations. Jerke JL; Lee Y; Tymczak CJ J Chem Phys; 2015 Aug; 143(6):064108. PubMed ID: 26277128 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]