These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 25310810)
1. Metabolism of n-C10:0 and n-C11:0 fatty acids by Trichoderma koningii, Penicillium janthinellum and their mixed culture: I. Biomass and CO2 production, and allocation of intracellular lipids. Chahal A; Monreal CM; Bissett J; Rowland O; Smith ML; Shea Miller S J Environ Sci Health B; 2014; 49(12):945-54. PubMed ID: 25310810 [TBL] [Abstract][Full Text] [Related]
2. Metabolism of nC11 fatty acid fed to Trichoderma koningii and Penicillium janthinellum II: Production of intracellular and extracellular lipids. Monreal CM; Chahal A; Rowland O; Smith M; Schnitzer M J Environ Sci Health B; 2014; 49(12):955-65. PubMed ID: 25310811 [TBL] [Abstract][Full Text] [Related]
3. Chemical characterization of fatty acids, alkanes, n-diols and alkyl esters produced by a mixed culture of Trichoderma koningii and Penicillium janthinellum grown aerobically on undecanoic acid, potatoe dextrose and their mixture. Monreal CM; Chahal A; Schnitzer M; Rowland O J Environ Sci Health B; 2016; 51(5):326-39. PubMed ID: 26852878 [TBL] [Abstract][Full Text] [Related]
4. Dominant fungi in the rhizosphere of established tea bushes and their interaction with the dominant bacteria under in situ conditions. Pandey A; Palni LM; Bisht D Microbiol Res; 2001; 156(4):377-82. PubMed ID: 11770856 [TBL] [Abstract][Full Text] [Related]
5. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. Papanikolaou S; Dimou A; Fakas S; Diamantopoulou P; Philippoussis A; Galiotou-Panayotou M; Aggelis G J Appl Microbiol; 2011 May; 110(5):1138-50. PubMed ID: 21281409 [TBL] [Abstract][Full Text] [Related]
6. Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Wang XW; Liang JR; Luo CS; Chen CP; Gao YH Bioresour Technol; 2014 Jun; 161():124-30. PubMed ID: 24698739 [TBL] [Abstract][Full Text] [Related]
7. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites. Okeke BC; Hall RW; Nanjundaswamy A; Thomson MS; Deravi Y; Sawyer L; Prescott A Microbiol Res; 2015 Jun; 175():24-33. PubMed ID: 25817459 [TBL] [Abstract][Full Text] [Related]
8. Flavor production from edible oils and their constituents by Penicillium corylophilum. Fujikawa H; Ibe A; Wauke T; Morozumi S; Mori H Shokuhin Eiseigaku Zasshi; 2002 Jun; 43(3):160-4. PubMed ID: 12238154 [TBL] [Abstract][Full Text] [Related]
9. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Wang Y; Rischer H; Eriksen NT; Wiebe MG Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064 [TBL] [Abstract][Full Text] [Related]
10. Arsenic biotransformation by arsenic-resistant fungi Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1. Su S; Zeng X; Bai L; Li L; Duan R Sci Total Environ; 2011 Nov; 409(23):5057-62. PubMed ID: 21920586 [TBL] [Abstract][Full Text] [Related]
11. Lipid extraction from the biomass of Trichoderma koningiopsis MX1 produced in a non-stirring culture for potential biodiesel production. Mendoza-López MR; Velez-Martínez D; Argumedo-Delira R; Alarcón A; García-Barradas O; Sánchez-Viveros G; Ferrera-Cerrato R Environ Sci Pollut Res Int; 2017 Nov; 24(33):25627-25633. PubMed ID: 27094268 [TBL] [Abstract][Full Text] [Related]
12. Bioaccumulation and biovolatilisation of pentavalent arsenic by Penicillin janthinellum, Fusarium oxysporum and Trichoderma asperellum under laboratory conditions. Su S; Zeng X; Bai L; Jiang X; Li L Curr Microbiol; 2010 Oct; 61(4):261-6. PubMed ID: 20155358 [TBL] [Abstract][Full Text] [Related]
13. Arsenate reduction and methylation in the cells of Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 investigated with X-ray absorption near edge structure. Su SM; Zeng XB; Li LF; Duan R; Bai LY; Li AG; Wang J; Jiang S J Hazard Mater; 2012 Dec; 243():364-7. PubMed ID: 23122191 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of carbon originating from CO2 into different compounds of soil microbial biomass and soil organic matter. Miltner A; Richnow HH; Kopinke FD; Kästner M Isotopes Environ Health Stud; 2005 Jun; 41(2):135-40. PubMed ID: 16191765 [TBL] [Abstract][Full Text] [Related]
15. Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment. Seo DC; DeLaune RD Sci Total Environ; 2010 Aug; 408(17):3623-31. PubMed ID: 20553938 [TBL] [Abstract][Full Text] [Related]
17. Degradation of pyrene by indigenous fungi from a former gasworks site. Saraswathy A; Hallberg R FEMS Microbiol Lett; 2002 May; 210(2):227-32. PubMed ID: 12044679 [TBL] [Abstract][Full Text] [Related]
19. The microalga Parachlorella kessleri--a novel highly efficient lipid producer. Li X; Přibyl P; Bišová K; Kawano S; Cepák V; Zachleder V; Čížková M; Brányiková I; Vítová M Biotechnol Bioeng; 2013 Jan; 110(1):97-107. PubMed ID: 22766749 [TBL] [Abstract][Full Text] [Related]
20. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Papanikolaou S; Chevalot I; Komaitis M; Marc I; Aggelis G Appl Microbiol Biotechnol; 2002 Mar; 58(3):308-12. PubMed ID: 11935181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]