These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 25310811)

  • 1. Metabolism of nC11 fatty acid fed to Trichoderma koningii and Penicillium janthinellum II: Production of intracellular and extracellular lipids.
    Monreal CM; Chahal A; Rowland O; Smith M; Schnitzer M
    J Environ Sci Health B; 2014; 49(12):955-65. PubMed ID: 25310811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of n-C10:0 and n-C11:0 fatty acids by Trichoderma koningii, Penicillium janthinellum and their mixed culture: I. Biomass and CO2 production, and allocation of intracellular lipids.
    Chahal A; Monreal CM; Bissett J; Rowland O; Smith ML; Shea Miller S
    J Environ Sci Health B; 2014; 49(12):945-54. PubMed ID: 25310810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical characterization of fatty acids, alkanes, n-diols and alkyl esters produced by a mixed culture of Trichoderma koningii and Penicillium janthinellum grown aerobically on undecanoic acid, potatoe dextrose and their mixture.
    Monreal CM; Chahal A; Schnitzer M; Rowland O
    J Environ Sci Health B; 2016; 51(5):326-39. PubMed ID: 26852878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dependence of the fatty acid composition of the lipids in fungi of the genus Penicillium on their natural habitat conditions].
    Feofilova EP; Bab'eva EN; Abyzov SS; Odintsova EV
    Mikrobiologiia; 1985; 54(5):763-9. PubMed ID: 3937035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains.
    Papanikolaou S; Dimou A; Fakas S; Diamantopoulou P; Philippoussis A; Galiotou-Panayotou M; Aggelis G
    J Appl Microbiol; 2011 May; 110(5):1138-50. PubMed ID: 21281409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures.
    Papanikolaou S; Chevalot I; Komaitis M; Marc I; Aggelis G
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):308-12. PubMed ID: 11935181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Lipid composition of Fusarium sambucinum grown in a fermenter on media with different carbon sources].
    Ievleva NR; Bragintseva LM
    Mikrobiologiia; 1984; 53(4):628-32. PubMed ID: 6482751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of phospholipid composition of black cumin (Nigella sativa L.) seed oil.
    Ramadan MF; Mörsel JT
    Nahrung; 2002 Aug; 46(4):240-4. PubMed ID: 12224418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Fatty acid composition of Fusidium coccineum lipids].
    Konova IV; Beliaeva TV; Rudakova LM; Bartoshevich IuE
    Antibiot Med Biotekhnol; 1985 Nov; 30(11):816-9. PubMed ID: 4091516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the potential of fatty acids produced by filamentous fungi as feedstock for biodiesel production.
    Rivaldi JD; Carvalho AKF; da Conceição LRV; de Castro HF
    Prep Biochem Biotechnol; 2017 Nov; 47(10):970-976. PubMed ID: 28857682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of dilution rate and carbon-to-nitrogen ratio on lipid accumulation by Rhodosporidium toruloides under chemostat conditions].
    Shen H; Jin G; Hu C; Gong Z; Bai F; Zhao ZK
    Sheng Wu Gong Cheng Xue Bao; 2012 Jan; 28(1):56-64. PubMed ID: 22667109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BIOCHEMICAL CHANGES DURING THE GROWTH OF FUNGI. II. ERGOSTEROL AND FATTY ACIDS IN PENICILLIUM ATROVENETUM.
    VANETTEN JL; GOTTLIEB D
    J Bacteriol; 1965 Feb; 89(2):409-14. PubMed ID: 14255708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of the nutrient medium on the total lipid fatty acid composition of Actinomyces canosus].
    Koval'chuk LP; Donets AT; Krokhmaliuk VV; Burtseva SA; Razumovskiĭ PN
    Mikrobiologiia; 1977; 46(2):252-6. PubMed ID: 882009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fatty acid content in the lipid fraction of pork].
    Monov G; Miteva E
    Vet Med Nauki; 1980; 17(3):56-9. PubMed ID: 7222459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of the fatty acid composition of total lipids from mycoplasmas.
    Miura Y; Imaeda N; Shinoda M; Tamura H; Ueta N
    Jpn J Exp Med; 1978 Dec; 48(6):525-31. PubMed ID: 750678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Lipids from the green algae Botryococcus during staged growth in batch mode].
    Kalacheva GS; Zhila NO; Volova TG
    Mikrobiologiia; 2001; 70(3):305-12. PubMed ID: 11450451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic biotransformation by arsenic-resistant fungi Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1.
    Su S; Zeng X; Bai L; Li L; Duan R
    Sci Total Environ; 2011 Nov; 409(23):5057-62. PubMed ID: 21920586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of a novel isolate of Candida tropicalis for enhanced lipid production.
    Dey P; Maiti MK
    J Appl Microbiol; 2013 May; 114(5):1357-68. PubMed ID: 23311514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Fatty acid composition of the lipids in fungi of the genus Aspergillus developing on mineral media with different carbon sources].
    Kolesnikova IG; Tolstikova GV
    Mikrobiologiia; 1984; 53(6):938-41. PubMed ID: 6442390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Lipids of a paraffin-oxidizing strain of Pseudomonas aeruginosa].
    Koronelli TV; Komarova TI; Denisov IuV
    Mikrobiologiia; 1982; 51(4):673-7. PubMed ID: 6815432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.