These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 25311008)

  • 1. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.
    Zhu W; Crozier KB
    Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe.
    Chen W; Zhang S; Kang M; Liu W; Ou Z; Li Y; Zhang Y; Guan Z; Xu H
    Light Sci Appl; 2018; 7():56. PubMed ID: 30839623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions.
    Zhou ZK; Xue J; Zheng Z; Li J; Ke Y; Yu Y; Han JB; Xie W; Deng S; Chen H; Wang X
    Nanoscale; 2015 Oct; 7(37):15392-403. PubMed ID: 26335388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving resolution in quantum subnanometre-gap tip-enhanced Raman nanoimaging.
    Zhang Y; Voronine DV; Qiu S; Sinyukov AM; Hamilton M; Liege Z; Sokolov AV; Zhang Z; Scully MO
    Sci Rep; 2016 May; 6():25788. PubMed ID: 27220882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extending Plasmonic Enhancement Limit with Blocked Electron Tunneling by Monolayer Hexagonal Boron Nitride.
    Chen S; Li P; Zhang C; Wu W; Zhou G; Zhang C; Weng S; Ding T; Wu DY; Yang L
    Nano Lett; 2023 Jun; 23(12):5445-5452. PubMed ID: 36995130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inelastic Light Scattering in the Vicinity of a Single-Atom Quantum Point Contact in a Plasmonic Picocavity.
    Liu S; Bonafe FP; Appel H; Rubio A; Wolf M; Kumagai T
    ACS Nano; 2023 Jun; 17(11):10172-10180. PubMed ID: 37183801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps.
    Zhu Z; Bai B; Duan H; Zhang H; Zhang M; You O; Li Q; Tan Q; Wang J; Fan S; Jin G
    Small; 2014 Apr; 10(8):1603-11. PubMed ID: 24665074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.
    Ertsgaard CT; McKoskey RM; Rich IS; Lindquist NC
    ACS Nano; 2014 Oct; 8(10):10941-6. PubMed ID: 25268457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical field enhancement by strong plasmon interaction in graphene nanostructures.
    Thongrattanasiri S; García de Abajo FJ
    Phys Rev Lett; 2013 May; 110(18):187401. PubMed ID: 23683241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings.
    Ouyang L; Meyer-Zedler T; See KM; Chen WL; Lin FC; Akimov D; Ehtesabi S; Richter M; Schmitt M; Chang YM; Gräfe S; Popp J; Huang JS
    ACS Nano; 2021 Jan; 15(1):809-818. PubMed ID: 33356140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing the quantum regime in tunnelling plasmonics.
    Savage KJ; Hawkeye MM; Esteban R; Borisov AG; Aizpurua J; Baumberg JJ
    Nature; 2012 Nov; 491(7425):574-7. PubMed ID: 23135399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering.
    Esteban R; Baumberg JJ; Aizpurua J
    Acc Chem Res; 2022 Jul; 55(14):1889-1899. PubMed ID: 35776555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active quantum plasmonics.
    Marinica DC; Zapata M; Nordlander P; Kazansky AK; M Echenique P; Aizpurua J; Borisov AG
    Sci Adv; 2015 Dec; 1(11):e1501095. PubMed ID: 26824066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced single-molecule spectroscopy in highly confined optical fields: from λ/2-Fabry-Pérot resonators to plasmonic nano-antennas.
    Kern AM; Zhang D; Brecht M; Chizhik AI; Failla AV; Wackenhut F; Meixner AJ
    Chem Soc Rev; 2014 Feb; 43(4):1263-86. PubMed ID: 24365864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant Optical Antennas with Atomic-Sized Tips and Tunable Gaps Achieved by Mechanical Actuation and Electrical Control.
    Gruber CM; Herrmann L; Bellido EP; Dössegger J; Olziersky A; Drechsler U; Puebla-Hellmann G; Botton GA; Novotny L; Lörtscher E
    Nano Lett; 2020 Jun; 20(6):4346-4353. PubMed ID: 32369701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman enhancement on a broadband meta-surface.
    Ayas S; Güner H; Türker B; Ekiz OÖ; Dirisaglik F; Okyay AK; Dâna A
    ACS Nano; 2012 Aug; 6(8):6852-61. PubMed ID: 22845672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How To Identify Plasmons from the Optical Response of Nanostructures.
    Zhang R; Bursi L; Cox JD; Cui Y; Krauter CM; Alabastri A; Manjavacas A; Calzolari A; Corni S; Molinari E; Carter EA; García de Abajo FJ; Zhang H; Nordlander P
    ACS Nano; 2017 Jul; 11(7):7321-7335. PubMed ID: 28651057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.